Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

Kirsten BOBZIN , Nazlim BAGCIVAN , Lidong ZHAO , Ivica PETKOVIC , Jochen SCHEIN , Karsten HARTZ-BEHREND , Stefan KIRNER , José-Luis MARQUÉS , Günter FORSTER

Front. Mech. Eng. ›› 2011, Vol. 6 ›› Issue (3) : 324 -331.

PDF (308KB)
Front. Mech. Eng. ›› 2011, Vol. 6 ›› Issue (3) : 324 -331. DOI: 10.1007/s11465-011-0125-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

Author information +
History +
PDF (308KB)

Abstract

Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

Keywords

plasma spraying / electric arc / three-cathode plasma torch / numerical simulation / computed tomography

Cite this article

Download citation ▾
Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUÉS, Günter FORSTER. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying. Front. Mech. Eng., 2011, 6(3): 324-331 DOI:10.1007/s11465-011-0125-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pfender E. Thermal plasma technology: Where do we stand and where do we go. Plasma Chemistry and Plasma Processing, 1999, 19(1): 1–31

[2]

Fauchais P. Understanding plasma spraying. Journal of Physics. D, Applied Physics, 2004, 37(9): 86–108

[3]

Fauchais P, Fukumoto M, Vardelle A, Vardelle M. Knowledge concerning splat formation: An invited review. J Thermal Spray Technol, 2004, 13(3): 337–360

[4]

Dorier J L, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Transactions on Plasma Science, 2001, 29(3): 494–501

[5]

Dzulko M, Forster G, Landes K D, Zierhut J, Nassenstein K. Plasma torch developments. In: Proc of the International Thermal Spray Conference, Basel, Switzerland, DVS Deutscher Verband für Schweißen, 2005

[6]

Fauchais P, Montavon P, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surface and Coatings Technology, 2006, 201(5): 1908–1921

[7]

Bobzin K, Ernst F, Richardt K, Sporer D, Fiala P. Tailor-made coatings for turbine applications using the triplex pro 200. In: Proc International Thermal Spray Conference, Maastricht, Netherlands, DVS Deutscher Verband für Schweißen, 2008

[8]

Schein J, Richter M, Landes K D, Forster G, Zierhut J, Dzulko M. Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Thermal Spray Technol, 2008, 17(3): 338–343

[9]

Baudry C, Vardelle A, Mariaux G. Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion. High Tech Plasma Proc, 2005, 9(1): 1–15

[10]

Trelles J P, Chazelas C, Vardelle A, Heberlein J V R. Arc Plasma Torch Modeling. J Thermal Spray Technol, 2009, 18(5-6): 728–752

[11]

Felix A, Muggli F, Molz R J, McCullough R, Hawley D.Improvement of plasma gun performance using comprehensive fluid element modelling: Part I. J Thermal Spray Technol, 2007, 16(5-6): 677–683

[12]

Molz R, McCullough R, Hawley D, Muggli F. Improvement of plasma gun performance using comprehensive fluid element modelling: Part II. J Thermal Spray Technol, 2007, 16(5-6): 684–689

[13]

Speckhofer G. Der magnetisch ausgelenkte Argonhochdruck-lichtbogen: Experimentelle untersuchungen and 3D-Modellierung. Dissertation for the Doctoral Degree, TU München, 1995: 27–29 (in German)

[14]

Murphy A B, Arundelli C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing, 1994, 14(4): 451–490

[15]

Marqués J L, Forster G, Schein J. Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J, 2009, 2(2): 89–98

[16]

Boulos M, Fauchais P, Pfender E. Thermal Plasmas. New York: Plenum Press, 1994

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (308KB)

3453

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/