RESEARCH ARTICLE

Capsule endoscopy—A mechatronics perspective

  • Lin LIN , 1 ,
  • Mahdi RASOULI 1 ,
  • Andy Prima KENCANA 1 ,
  • Su Lim TAN 2 ,
  • Kai Juan WONG 2 ,
  • Khek Yu HO 3 ,
  • Soo Jay PHEE 1
Expand
  • 1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
  • 2. School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
  • 3. National University Hospital, Singapore, Singapore

Received date: 01 Sep 2010

Accepted date: 25 Oct 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.

Cite this article

Lin LIN , Mahdi RASOULI , Andy Prima KENCANA , Su Lim TAN , Kai Juan WONG , Khek Yu HO , Soo Jay PHEE . Capsule endoscopy—A mechatronics perspective[J]. Frontiers of Mechanical Engineering, 0 , 6(1) : 33 -39 . DOI: 10.1007/s11465-011-0203-5

Acknowledgments

This study was funded by Agency for Science, Technology and Research (A*STAR) of Singapore (No. 082-140-0036).
1
Moglia A, Menciassi A, Schurr M O, Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomedical Microdevices, 2007, 9(2): 235-243

DOI PMID

2
El-Matary W. Wireless capsule endoscopy: indications, limitations, and future challenges. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46(1): 4-12

DOI PMID

3
Melmed G Y, Lo S K. Capsule endoscopy: practical applications. Clinical Gastroenterology and Hepatology, 2005, 3(5): 411-422

DOI PMID

4
Given Imaging. http://www.givenimaging.com

5
http://www.olympusamerica.com/msg_section/index.asp

6
http://www.intromedic.com

7
http://www.jinshangroup.com

8
Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE Trans Mechatronics, 2008, 13(2): 169-179

DOI

9
Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy, 2008, 67(7): 1153-1158

DOI PMID

10
Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy, 2010, 72(2): 381-387

DOI PMID

11
Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics, 2009, 25(4): 845-851

DOI PMID

12
Kim B, Lee M G, Lee Y P, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators. A, Physical, 2006, 125(2): 429-437

DOI

13
Swain P, Toor A, Volke F, Keller J, Gerber J, Rabinovitz E, Rothstein R I. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal Endoscopy, 2010, 71(7): 1290-1293

DOI PMID

14
Raju G S, Nath S K. Capsule endoscopy. Current Gastroenterology Reports, 2005, 7(5): 358-364

DOI PMID

15
Rentschler M E, Dumpert J, Platt S R, Ahmed S I, Farritor S M, Oleynikov D. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy, 2006, 20(1): 135-138

DOI PMID

16
Lim K J, Lee J S, Park S H, Kang S H, Kim H H. Fabrication and characteristics of impact type ultrasonic motor. Journal of the European Ceramic Society, 2007, 27(13-15): 4159-4162

DOI

17
Kim K H, Lee S Y, Kim S. A mobile auto-focus actuator based on a rotary VCM with the zero holding current. Optics Express, 2009, 17(7): 5891-5896

DOI PMID

18
Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical, 2009, 156(1): 72-78

DOI

19
Rasouli M, Kencana A P, Huynh V A. Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics Singapore, 2010, 68-71

20
Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointestinal Endoscopy, 2010, 72(4): 836-840

DOI PMID

21
Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy, 2006, 60(8): 370-374

DOI PMID

22
Kong K C, Cha J, Jeon D, Cho D D. A rotational micro biopsy device for the capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 1839-1843

23
Park S, Koo K, Bang S M, Park J Y, Song S Y, Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 2008, 18(2): 025032

DOI

24
Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 2000, 3(11): 385-392

DOI PMID

25
Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research, 1999, 16(2): 266-271

DOI PMID

26
Gröning R, Bensmann H, Müller R S. Control of drug release from capsules using high frequency energy transmission systems. International Journal of Pharmaceutics, 2008, 364(1): 9-13

DOI PMID

27
Fuhr U, Staib A H, Harder S, Becker K, Liermann D, Schöllnhammer G, Roed I S. Absorption of ipsapirone along the human gastrointestinal tract. British Journal of Clinical Pharmacology, 1994, 38(1): 83-86

PMID

28
Stevens H N E, Wilson C G, Welling P G, Bakhshaee M, Binns J S, Perkins A C, Frier M, Blackshaw E P, Frame M W, Nichols D J, Humphrey M J, Wicks S R. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. International Journal of Pharmaceutics, 2002, 236(1-2): 27-34

DOI PMID

29
Kencana A P, Rasouli M, Huynh V A, Ting E K, Chong Y L, Nguyen D Q H, Tan S L, Wong K J, Phee S J. An Ingestible Wireless Capsule for Treatment of Obesity, In: Proceedings of the Engineering in Medicine and Biology, 2010

30
Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology, 2008, 14(26): 4142-4145

DOI PMID

31
Sterzer F. Microwave medical devices. Microwave Magazine, IEEE, 2002, 3(1): 65-70

DOI

32
Wang L, Drysdale T D, Cumming D R S. In situ characterization of two wireless transmission schemes for ingestible capsules. Biomedical Engineering, IEEE Transactions on, 2007, 54(11): 2020-2027

DOI PMID

33
Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors & Bioelectronics, 2007, 22(7): 1390-1395

DOI PMID

34
McSpadden J O, Yoo T, Chang K. Theoretical and experimental investigation of a rectenna element for microwave power transmission. Microwave Theory and Techniques, IEEE Transactions on, 1992, 40(12): 2359-2366

DOI

35
Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic Power and Data Link for Wireless Implantable Applications. In: Proceedings of Wireless Pervasive Computing, 2007

36
Ryu M, Kim J D, Chin H U, Kim J, Song S Y. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing, 2007, 45(10): 997-1002

DOI PMID

37
Xin W, Yan G, Wang W. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(1): 113-122

PMID

38
Chao H, Max Qinghu M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 628-633

39
Johannessen E A, Wang L, Reid S W J, Cumming D R S, Cooper J M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip, 2006, 6(1): 39-45

DOI PMID

Outlines

/