Capsule endoscopy—A mechatronics perspective

Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE

PDF(194 KB)
PDF(194 KB)
Front. Mech. Eng. ›› DOI: 10.1007/s11465-011-0203-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Capsule endoscopy—A mechatronics perspective

Author information +
History +

Abstract

The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.

Keywords

wireless capsule endoscopy / ingestible medical device / in-body medical device / medical robot / miniature actuator

Cite this article

Download citation ▾
Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE. Capsule endoscopy—A mechatronics perspective. Front Mech Eng, https://doi.org/10.1007/s11465-011-0203-5

References

[1]
Moglia A, Menciassi A, Schurr M O, Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomedical Microdevices, 2007, 9(2): 235-243
CrossRef Pubmed Google scholar
[2]
El-Matary W. Wireless capsule endoscopy: indications, limitations, and future challenges. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46(1): 4-12
CrossRef Pubmed Google scholar
[3]
Melmed G Y, Lo S K. Capsule endoscopy: practical applications. Clinical Gastroenterology and Hepatology, 2005, 3(5): 411-422
CrossRef Pubmed Google scholar
[4]
Given Imaging. http://www.givenimaging.com
[5]
http://www.olympusamerica.com/msg_section/index.asp
[6]
http://www.intromedic.com
[7]
http://www.jinshangroup.com
[8]
Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE Trans Mechatronics, 2008, 13(2): 169-179
CrossRef Google scholar
[9]
Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy, 2008, 67(7): 1153-1158
CrossRef Pubmed Google scholar
[10]
Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy, 2010, 72(2): 381-387
CrossRef Pubmed Google scholar
[11]
Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics, 2009, 25(4): 845-851
CrossRef Pubmed Google scholar
[12]
Kim B, Lee M G, Lee Y P, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators. A, Physical, 2006, 125(2): 429-437
CrossRef Google scholar
[13]
Swain P, Toor A, Volke F, Keller J, Gerber J, Rabinovitz E, Rothstein R I. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal Endoscopy, 2010, 71(7): 1290-1293
CrossRef Pubmed Google scholar
[14]
Raju G S, Nath S K. Capsule endoscopy. Current Gastroenterology Reports, 2005, 7(5): 358-364
CrossRef Pubmed Google scholar
[15]
Rentschler M E, Dumpert J, Platt S R, Ahmed S I, Farritor S M, Oleynikov D. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy, 2006, 20(1): 135-138
CrossRef Pubmed Google scholar
[16]
Lim K J, Lee J S, Park S H, Kang S H, Kim H H. Fabrication and characteristics of impact type ultrasonic motor. Journal of the European Ceramic Society, 2007, 27(13-15): 4159-4162
CrossRef Google scholar
[17]
Kim K H, Lee S Y, Kim S. A mobile auto-focus actuator based on a rotary VCM with the zero holding current. Optics Express, 2009, 17(7): 5891-5896
CrossRef Pubmed Google scholar
[18]
Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical, 2009, 156(1): 72-78
CrossRef Google scholar
[19]
Rasouli M, Kencana A P, Huynh V A. Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics Singapore, 2010, 68-71
[20]
Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointestinal Endoscopy, 2010, 72(4): 836-840
CrossRef Pubmed Google scholar
[21]
Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy, 2006, 60(8): 370-374
CrossRef Pubmed Google scholar
[22]
Kong K C, Cha J, Jeon D, Cho D D. A rotational micro biopsy device for the capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 1839-1843
[23]
Park S, Koo K, Bang S M, Park J Y, Song S Y, Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 2008, 18(2): 025032
CrossRef Google scholar
[24]
Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 2000, 3(11): 385-392
CrossRef Pubmed Google scholar
[25]
Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research, 1999, 16(2): 266-271
CrossRef Pubmed Google scholar
[26]
Gröning R, Bensmann H, Müller R S. Control of drug release from capsules using high frequency energy transmission systems. International Journal of Pharmaceutics, 2008, 364(1): 9-13
CrossRef Pubmed Google scholar
[27]
Fuhr U, Staib A H, Harder S, Becker K, Liermann D, Schöllnhammer G, Roed I S. Absorption of ipsapirone along the human gastrointestinal tract. British Journal of Clinical Pharmacology, 1994, 38(1): 83-86
Pubmed
[28]
Stevens H N E, Wilson C G, Welling P G, Bakhshaee M, Binns J S, Perkins A C, Frier M, Blackshaw E P, Frame M W, Nichols D J, Humphrey M J, Wicks S R. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. International Journal of Pharmaceutics, 2002, 236(1-2): 27-34
CrossRef Pubmed Google scholar
[29]
Kencana A P, Rasouli M, Huynh V A, Ting E K, Chong Y L, Nguyen D Q H, Tan S L, Wong K J, Phee S J. An Ingestible Wireless Capsule for Treatment of Obesity, In: Proceedings of the Engineering in Medicine and Biology, 2010
[30]
Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology, 2008, 14(26): 4142-4145
CrossRef Pubmed Google scholar
[31]
Sterzer F. Microwave medical devices. Microwave Magazine, IEEE, 2002, 3(1): 65-70
CrossRef Google scholar
[32]
Wang L, Drysdale T D, Cumming D R S. In situ characterization of two wireless transmission schemes for ingestible capsules. Biomedical Engineering, IEEE Transactions on, 2007, 54(11): 2020-2027
CrossRef Pubmed Google scholar
[33]
Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors & Bioelectronics, 2007, 22(7): 1390-1395
CrossRef Pubmed Google scholar
[34]
McSpadden J O, Yoo T, Chang K. Theoretical and experimental investigation of a rectenna element for microwave power transmission. Microwave Theory and Techniques, IEEE Transactions on, 1992, 40(12): 2359-2366
CrossRef Google scholar
[35]
Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic Power and Data Link for Wireless Implantable Applications. In: Proceedings of Wireless Pervasive Computing, 2007
[36]
Ryu M, Kim J D, Chin H U, Kim J, Song S Y. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing, 2007, 45(10): 997-1002
CrossRef Pubmed Google scholar
[37]
Xin W, Yan G, Wang W. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(1): 113-122
Pubmed
[38]
Chao H, Max Qinghu M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 628-633
[39]
Johannessen E A, Wang L, Reid S W J, Cumming D R S, Cooper J M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip, 2006, 6(1): 39-45
CrossRef Pubmed Google scholar

Acknowledgments

This study was funded by Agency for Science, Technology and Research (A*STAR) of Singapore (No. 082-140-0036).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(194 KB)

Accesses

Citations

Detail

Sections
Recommended

/