Frontiers of Mechanical Engineering >
Progress in terahertz nondestructive testing: A review
Received date: 26 May 2017
Accepted date: 28 Sep 2017
Published date: 15 Sep 2019
Copyright
Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.
Shuncong ZHONG . Progress in terahertz nondestructive testing: A review[J]. Frontiers of Mechanical Engineering, 2019 , 14(3) : 273 -281 . DOI: 10.1007/s11465-018-0495-9
1 |
Brown E, McIntosh K, Nichols K,
|
2 |
Gu P, Tani M, Hyodo M,
|
3 |
Smet J, Fonstad C, Hu Q. Intrawell and interwell intersubband transitions in multiple quantum wells for far-infrared sources. Journal of Applied Physics, 1996, 79(12): 9305–9320
|
4 |
Jeong Y, Lee B, Kim S,
|
5 |
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
|
6 |
Shen Y, Upadhya P, Linfield E,
|
7 |
Tani M, Horita K, Kinoshita T,
|
8 |
Yu C, Fan S, Sun Y,
|
9 |
Ho L, Müller R, Gordon K C,
|
10 |
Zhong S, Shen Y, Ho L,
|
11 |
Shen Y. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review. International Journal of Pharmaceutics, 2011, 417(1–2): 48–60
|
12 |
Lin H, Dong Y, Markl D,
|
13 |
Tu W, Zhong S, Shen Y,
|
14 |
Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439
|
15 |
Dong J, Locquet A, Citrin D S. Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8400207
|
16 |
Dong J, Bianca Jackson J, Melis M,
|
17 |
Shen Y, Lo T, Taday P F,
|
18 |
Federici J F, Schulkin B, Huang F,
|
19 |
Woodward R M, Wallace V P, Arnone D D,
|
20 |
Crawley D, Longbottom C, Wallace V P,
|
21 |
Naito K, Kagawa Y, Utsuno S,
|
22 |
Stoik C, Bohn M, Blackshire J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT & E International, 2010, 43(2): 106–115
|
23 |
Lopato P. Double-sided terahertz imaging of multilayered glass fiber-reinforced polymer. Applied Sciences, 2017, 7(7): 661–674
|
24 |
Watanabe M, Kuroda S, Yamawaki H,
|
25 |
Fukuchi T, Fuse N, Okada M,
|
26 |
Roth D J, Cosgriff L M, Harder B,
|
27 |
Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
|
28 |
Strachan C J, Rades T, Newnham D A,
|
29 |
Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646–1648
|
30 |
Zhong S, Shen Y, Shen H,
|
31 |
Yoneda H, Tokuyama K, Ueda K,
|
32 |
Ropagnol X, Morandotti R, Ozaki T,
|
33 |
Zhong S, Shen Y, Evans M,
|
34 |
Shen H, Gan L, Newman N,
|
35 |
Shen H, Newman N, Gan L,
|
36 |
Liu L, Zhang Z, Gan L,
|
37 |
Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite material. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(2): 152–169
|
38 |
Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 2008, 16(21): 17039
|
39 |
Chady T, Przemyslaw P. Testing of glass-fiber reinforced composite materials using terahertz technique. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3–4): 1599–1605
|
40 |
Anbarasu A. Characterization of defects in fiber composites using terahertz imaging. Thesis for the Master’s Degree. Atlanta: Georgia Institute of Technology, 2008
|
41 |
Fukuchi T, Ozeki T, Okada M,
|
42 |
Fukuchi T, Fuse N, Okada M,
|
43 |
Fukuchi T, Fuse N, Okada M,
|
44 |
Chen C, Lee D, Pollock T,
|
45 |
Yasui T, Yasuda T, Sawanaka K,
|
46 |
Izutani Y, Akagi M, Kitagishi K. Measurements of paint thickness of automobiles by using THz time-domain spectroscopy. In: Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong: IEEE, 2012
|
47 |
Yasuda T, Iwata T, Araki T,
|
48 |
Su K, Shen Y, Zeitler J A. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432–439
|
49 |
Su K, May R K, Gregory I S,
|
50 |
Cook D J, Sharpe S J, Lee S,
|
51 |
Cook D J, Lee S, Sharpe S J,
|
52 |
Tu W, Zhong S, Shen Y,
|
53 |
Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. Journal of Pharmaceutical Sciences, 2005, 94(1): 177–183
|
54 |
Ho L, Müller R, Römer M,
|
55 |
Zeitler J A, Shen Y, Baker C,
|
56 |
Wallace V P, Taday P F, Fitzgerald A J,
|
57 |
Ho L, Cuppok Y, Muschert S,
|
58 |
May R K, Evans M J, Zhong S,
|
/
〈 | 〉 |