RESEARCH ARTICLE

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

  • Thomas ELLINGHAM 1,2 ,
  • Hrishikesh KHARBAS 1,2 ,
  • Mihai MANITIU 3 ,
  • Guenter SCHOLZ 3 ,
  • Lih-Sheng TURNG , 1,2
Expand
  • 1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
  • 2. Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
  • 3. BASF Corporation, Wyandotte, MI 48192, USA

Received date: 21 Apr 2017

Accepted date: 22 Oct 2017

Published date: 23 Jan 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

Cite this article

Thomas ELLINGHAM , Hrishikesh KHARBAS , Mihai MANITIU , Guenter SCHOLZ , Lih-Sheng TURNG . Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties[J]. Frontiers of Mechanical Engineering, 2018 , 13(1) : 96 -106 . DOI: 10.1007/s11465-018-0498-6

Acknowledgements

The authors would like to acknowledge the support of the Kuo K. and Cindy F. Wang Professorship, the Vilas Distinguished Achievement Professorship, the Wisconsin Distinguished Graduate Fellowship, the 3M Fellowship, and the Wisconsin Institute for Discovery.
1
Colton J S, Suh  N P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987, 27(7): 485–492

DOI

2
Ames K A. Elastomers for shoe applications. Rubber Chemistry and Technology, 2004, 77(3): 413–475

DOI

3
Colton J S, Suh  N P. Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987, 27(7): 500–503

DOI

4
Lakes R S. Viscoelastic Materials. Cambridge: Cambridge University Press, 2009, 359–360

DOI

5
Engels H W, Pirkl  H G, Albers  R,  Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie International Edition, 2013, 52(36): 9422–9441

DOI

6
Okamoto K T. Microcellular Processing. Cincinnati: Hanser Publication, 2003

7
Anson M, Ko  J M, Lam  E S S. Advances in Building Technology. Amsterdam: Elsevier, 2002

8
Xu J. Microcellular Injection Molding. Hoboken: Wiley, 2011

9
Kharbas H A. Developments in microcellular injection molding technology. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2003

10
Sun X, Turng  L S. Novel injection molding foaming approaches using gas-laden pellets with N2, CO2, and N2 + CO2 as the blowing agents. Polymer Engineering and Science, 2014, 54(4): 899–913

DOI

11
Shaayegan V, Mark  L H, Park  C B,  Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. American Institute of Chemical Engineers, 2016, 62(11): 4035–4046

DOI

12
Rizvi S J, Alaei  M, Yadav A,  Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics, 2014, 50(3): 199–219

DOI

13
Moon Y, Cha  S W, Seo  J. Bubble nucleation and growth in microcellular injection molding processes. Polymer-Plastics Technology and Engineering, 2008, 47(4): 420–426

DOI

14
Nellis G, Klein  S. Heat Transfer. Cambridge: Cambridge University Press, 2009, 137

15
Sun X, Turng  L. Foam injection molding using nitrogen and carbon dioxide as co-blowing agents. Society of Plastics Engineers: Plastics Research Online, 2013, 2–4

DOI

16
Sun X, Kharbas  H, Peng J,  A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer, 2015, 56: 102–110

DOI

17
Sun X, Kharbas  H, Turng L S. Fabrication of highly expanded thermoplastic polyurethane foams using microcellular injection molding and gas-laden pellets. Polymer Engineering and Science, 2015, 55(11): 2643–2652

DOI

18
Kharbas H A. Manufacturing highly expanded thermoplastic polyurethane foams using novel injection molding foaming technologies. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2016 

19
Qi H J J,  Boyce M C C. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 2005, 37(8): 817–839

DOI

20
Gong L, Kyriakides  S, Triantafyllidis N. On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 771–794

DOI

Outlines

/