Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

Thomas ELLINGHAM , Hrishikesh KHARBAS , Mihai MANITIU , Guenter SCHOLZ , Lih-Sheng TURNG

Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 96 -106.

PDF (978KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 96 -106. DOI: 10.1007/s11465-018-0498-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

Author information +
History +
PDF (978KB)

Abstract

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

Keywords

thermoplastic polyurethane / microcellular injection molding / cavity expansion / compressive strength / hysteresis loss ratio

Cite this article

Download citation ▾
Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties. Front. Mech. Eng., 2018, 13(1): 96-106 DOI:10.1007/s11465-018-0498-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Colton J SSuh  N P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science198727(7): 485–492

[2]

Ames K A. Elastomers for shoe applications. Rubber Chemistry and Technology200477(3): 413–475

[3]

Colton J SSuh  N P. Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science198727(7): 500–503

[4]

Lakes R S. Viscoelastic Materials. Cambridge: Cambridge University Press2009, 359–360

[5]

Engels H WPirkl  H GAlbers  R Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie International Edition201352(36): 9422–9441

[6]

Okamoto K T. Microcellular Processing. Cincinnati: Hanser Publication2003

[7]

Anson MKo  J MLam  E S S. Advances in Building Technology. Amsterdam: Elsevier2002

[8]

Xu J. Microcellular Injection Molding. Hoboken: Wiley2011

[9]

Kharbas H A. Developments in microcellular injection molding technology. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison2003

[10]

Sun XTurng  L S. Novel injection molding foaming approaches using gas-laden pellets with N2, CO2, and N2 + CO2 as the blowing agents. Polymer Engineering and Science201454(4): 899–913

[11]

Shaayegan VMark  L HPark  C B Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. American Institute of Chemical Engineers201662(11): 4035–4046

[12]

Rizvi S JAlaei  MYadav A Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics201450(3): 199–219

[13]

Moon YCha  S WSeo  J. Bubble nucleation and growth in microcellular injection molding processes. Polymer-Plastics Technology and Engineering200847(4): 420–426

[14]

Nellis GKlein  S. Heat Transfer. Cambridge: Cambridge University Press2009, 137

[15]

Sun XTurng  L. Foam injection molding using nitrogen and carbon dioxide as co-blowing agents. Society of Plastics Engineers: Plastics Research Online2013, 2–4

[16]

Sun XKharbas  HPeng J A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer201556: 102–110

[17]

Sun XKharbas  HTurng L S. Fabrication of highly expanded thermoplastic polyurethane foams using microcellular injection molding and gas-laden pellets. Polymer Engineering and Science201555(11): 2643–2652

[18]

Kharbas H A. Manufacturing highly expanded thermoplastic polyurethane foams using novel injection molding foaming technologies. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison2016 

[19]

Qi H J J Boyce M C C. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials200537(8): 817–839

[20]

Gong LKyriakides  STriantafyllidis N. On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of Solids200553(4): 771–794

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (978KB)

2806

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/