Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG

PDF(978 KB)
PDF(978 KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 96-106. DOI: 10.1007/s11465-018-0498-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

Author information +
History +

Abstract

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

Keywords

thermoplastic polyurethane / microcellular injection molding / cavity expansion / compressive strength / hysteresis loss ratio

Cite this article

Download citation ▾
Thomas ELLINGHAM, Hrishikesh KHARBAS, Mihai MANITIU, Guenter SCHOLZ, Lih-Sheng TURNG. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties. Front. Mech. Eng., 2018, 13(1): 96‒106 https://doi.org/10.1007/s11465-018-0498-6

References

[1]
Colton J S, Suh  N P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987, 27(7): 485–492
CrossRef Google scholar
[2]
Ames K A. Elastomers for shoe applications. Rubber Chemistry and Technology, 2004, 77(3): 413–475
CrossRef Google scholar
[3]
Colton J S, Suh  N P. Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987, 27(7): 500–503
CrossRef Google scholar
[4]
Lakes R S. Viscoelastic Materials. Cambridge: Cambridge University Press, 2009, 359–360
CrossRef Google scholar
[5]
Engels H W, Pirkl  H G, Albers  R,  Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie International Edition, 2013, 52(36): 9422–9441
CrossRef Google scholar
[6]
Okamoto K T. Microcellular Processing. Cincinnati: Hanser Publication, 2003
[7]
Anson M, Ko  J M, Lam  E S S. Advances in Building Technology. Amsterdam: Elsevier, 2002
[8]
Xu J. Microcellular Injection Molding. Hoboken: Wiley, 2011
[9]
Kharbas H A. Developments in microcellular injection molding technology. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2003
[10]
Sun X, Turng  L S. Novel injection molding foaming approaches using gas-laden pellets with N2, CO2, and N2 + CO2 as the blowing agents. Polymer Engineering and Science, 2014, 54(4): 899–913
CrossRef Google scholar
[11]
Shaayegan V, Mark  L H, Park  C B,  Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. American Institute of Chemical Engineers, 2016, 62(11): 4035–4046
CrossRef Google scholar
[12]
Rizvi S J, Alaei  M, Yadav A,  Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics, 2014, 50(3): 199–219
CrossRef Google scholar
[13]
Moon Y, Cha  S W, Seo  J. Bubble nucleation and growth in microcellular injection molding processes. Polymer-Plastics Technology and Engineering, 2008, 47(4): 420–426
CrossRef Google scholar
[14]
Nellis G, Klein  S. Heat Transfer. Cambridge: Cambridge University Press, 2009, 137
[15]
Sun X, Turng  L. Foam injection molding using nitrogen and carbon dioxide as co-blowing agents. Society of Plastics Engineers: Plastics Research Online, 2013, 2–4
CrossRef Google scholar
[16]
Sun X, Kharbas  H, Peng J,  A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer, 2015, 56: 102–110
CrossRef Google scholar
[17]
Sun X, Kharbas  H, Turng L S. Fabrication of highly expanded thermoplastic polyurethane foams using microcellular injection molding and gas-laden pellets. Polymer Engineering and Science, 2015, 55(11): 2643–2652
CrossRef Google scholar
[18]
Kharbas H A. Manufacturing highly expanded thermoplastic polyurethane foams using novel injection molding foaming technologies. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2016 
[19]
Qi H J J,  Boyce M C C. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 2005, 37(8): 817–839
CrossRef Google scholar
[20]
Gong L, Kyriakides  S, Triantafyllidis N. On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 771–794
CrossRef Google scholar

Acknowledgements

The authors would like to acknowledge the support of the Kuo K. and Cindy F. Wang Professorship, the Vilas Distinguished Achievement Professorship, the Wisconsin Distinguished Graduate Fellowship, the 3M Fellowship, and the Wisconsin Institute for Discovery.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(978 KB)

Accesses

Citations

Detail

Sections
Recommended

/