Frontiers of Mechanical Engineering >
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
Received date: 04 May 2017
Accepted date: 27 Jul 2017
Published date: 05 Mar 2019
Copyright
The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
Key words: Mg alloys; fatigue behavior; microstructure; crack initiation; deformation mechanism
B. J. WANG , D. K. XU , S. D. WANG , E. H. HAN . Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Frontiers of Mechanical Engineering, 2019 , 14(1) : 113 -127 . DOI: 10.1007/s11465-018-0482-1
1 |
Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45
|
2 |
Mayer H, Papakyriacou M, Zettl
|
3 |
Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244
|
4 |
Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582
|
5 |
Xu D, Liu L, Xu Y,
|
6 |
Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224
|
7 |
Lv F, Yang F, Duan Q,
|
8 |
Yang F, Yin S, Li S,
|
9 |
Uematsu Y, Kakiuchi T, Tamada K,
|
10 |
Yu D, Zhang D, Sun J,
|
11 |
Wang S, Xu D, Wang B,
|
12 |
Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336
|
13 |
Xu D, Han E. Relationship between fatigue crack initiation and activated {10
|
14 |
Xu D, Liu L, Xu Y,
|
15 |
Xu D, Liu L, Xu Y,
|
16 |
Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162
|
17 |
Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24(12): 1255–1260
|
18 |
Wang B, Xu D, Dong J,
|
19 |
Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289
|
20 |
Sajuri Z B, Miyashita Y, Hosokai Y,
|
21 |
Horstemeyer M F, Yang N, Gall K,
|
22 |
Mayer H, Lipowsky H, Papakyriacou M,
|
23 |
Bae D H, Kim S H, Kim D H,
|
24 |
Li Z, Fu P, Peng L,
|
25 |
Wang S, Xu D, Wang B,
|
26 |
Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298
|
27 |
Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036
|
28 |
Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379
|
29 |
Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502
|
30 |
Man J, Obrtlik K, Blochwitz C,
|
31 |
Polák J, Man J, Vystavel T,
|
32 |
Yin S, Yang F, Yang X,
|
33 |
Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218
|
34 |
Obara T, Yoshinga H, Morozumi S. {112̄2}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853
|
35 |
Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919
|
36 |
Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826
|
37 |
Lahaie D, Embury J D, Chadwick M M,
|
38 |
Barnett M R, Keshavarz Z, Beer A G,
|
39 |
Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698
|
40 |
Li Z, Wang Q, Luo A,
|
41 |
Li Z, Fu P, Peng L,
|
42 |
Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459
|
43 |
Dong J, Liu W C, Song X,
|
44 |
Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386
|
/
〈 | 〉 |