Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN

PDF(1520 KB)
PDF(1520 KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 113-127. DOI: 10.1007/s11465-018-0482-1
REVIEW ARTICLE
REVIEW ARTICLE

Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

Author information +
History +

Abstract

The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

Keywords

Mg alloys / fatigue behavior / microstructure / crack initiation / deformation mechanism

Cite this article

Download citation ▾
B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review. Front. Mech. Eng., 2019, 14(1): 113‒127 https://doi.org/10.1007/s11465-018-0482-1

References

[1]
Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45
CrossRef Google scholar
[2]
Mayer H, Papakyriacou M, Zettl B, Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25(3): 245–256
CrossRef Google scholar
[3]
Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244
CrossRef Google scholar
[4]
Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582
CrossRef Google scholar
[5]
Xu D, Liu L, Xu Y, The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985–994
CrossRef Google scholar
[6]
Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224
CrossRef Google scholar
[7]
Lv F, Yang F, Duan Q, Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation. International Journal of Fatigue, 2011, 33(5): 672–682
CrossRef Google scholar
[8]
Yang F, Yin S, Li S, Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Materials Science and Engineering: A, 2008, 491(1–2): 131–136
CrossRef Google scholar
[9]
Uematsu Y, Kakiuchi T, Tamada K, EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84: 1–8
CrossRef Google scholar
[10]
Yu D, Zhang D, Sun J, High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Materials Science and Engineering: A, 2016, 662: 1–8
CrossRef Google scholar
[11]
Wang S, Xu D, Wang B, Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6(1): 23955
CrossRef Google scholar
[12]
Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336
CrossRef Google scholar
[13]
Xu D, Han E. Relationship between fatigue crack initiation and activated {10 1¯2} twins in as-extruded pure magnesium. Scripta Materialia, 2013, 69(9): 702–705
CrossRef Google scholar
[14]
Xu D, Liu L, Xu Y, The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454(1–2): 123–128
CrossRef Google scholar
[15]
Xu D, Liu L, Xu Y, The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56(1): 1–4
CrossRef Google scholar
[16]
Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162
CrossRef Google scholar
[17]
Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24(12): 1255–1260
CrossRef Google scholar
[18]
Wang B, Xu D, Dong J, Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar. Scripta Materialia, 2014, 88: 5–8
CrossRef Google scholar
[19]
Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289
CrossRef Google scholar
[20]
Sajuri Z B, Miyashita Y, Hosokai Y, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198–209
CrossRef Google scholar
[21]
Horstemeyer M F, Yang N, Gall K, High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327–1336
CrossRef Google scholar
[22]
Mayer H, Lipowsky H, Papakyriacou M, Application of ultrasound for fatigue testing of lightweight alloys. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 591–599
CrossRef Google scholar
[23]
Bae D H, Kim S H, Kim D H, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356
CrossRef Google scholar
[24]
Li Z, Fu P, Peng L, Comparison of high cycle fatigue behaviors of Mg-3Nd-0.2Zn-Zr alloy prepared by different casting processes. Materials Science and Engineering: A, 2013, 579: 170–179
CrossRef Google scholar
[25]
Wang S, Xu D, Wang B, Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy. Materials & Design, 2015, 84: 185–193
CrossRef Google scholar
[26]
Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298
CrossRef Google scholar
[27]
Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036
CrossRef Google scholar
[28]
Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379
CrossRef Google scholar
[29]
Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502
CrossRef Google scholar
[30]
Man J, Obrtlik K, Blochwitz C, Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Materialia, 2002, 50(15): 3767–3780
CrossRef Google scholar
[31]
Polák J, Man J, Vystavel T, The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Materials Science and Engineering: A, 2009, 517(1–2): 204–211
CrossRef Google scholar
[32]
Yin S, Yang F, Yang X, The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Materials Science and Engineering: A, 2008, 494(1–2): 397–400
CrossRef Google scholar
[33]
Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218
CrossRef Google scholar
[34]
Obara T, Yoshinga H, Morozumi S. {112̄2}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853
CrossRef Google scholar
[35]
Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919
CrossRef Google scholar
[36]
Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826
CrossRef Google scholar
[37]
Lahaie D, Embury J D, Chadwick M M, A note on the deformation of fine grained magnesium alloys. Scripta Metallurgica et Materialia, 1992, 27(2): 139–142
CrossRef Google scholar
[38]
Barnett M R, Keshavarz Z, Beer A G, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004, 52(17): 5093–5103
CrossRef Google scholar
[39]
Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698
CrossRef Google scholar
[40]
Li Z, Wang Q, Luo A, High cycle fatigue of cast Mg-3Nd-0.2Zn magnesium alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 44(11): 5202–5215
CrossRef Google scholar
[41]
Li Z, Fu P, Peng L, Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Materials Science and Engineering: A, 2013, 565: 250–257
CrossRef Google scholar
[42]
Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459
CrossRef Google scholar
[43]
Dong J, Liu W C, Song X, Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy. Materials Science and Engineering: A, 2010, 527(21–22): 6053–6063
CrossRef Google scholar
[44]
Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51701129, 51271183 and 51301172), Initiation Foundation of Shenyang Ligong University for Doctoral Research, the National Basic Research Program of China (973 Program) (Grant No. 2013CB632205), the National Key Research and Development Program of China (Grant No. 2016YFB0301105), and Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
AI Summary AI Mindmap
PDF(1520 KB)

Accesses

Citations

Detail

Sections
Recommended

/