Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

B. J. WANG , D. K. XU , S. D. WANG , E. H. HAN

Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 113 -127.

PDF (1520KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (1) : 113 -127. DOI: 10.1007/s11465-018-0482-1
REVIEW ARTICLE
REVIEW ARTICLE

Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

Author information +
History +
PDF (1520KB)

Abstract

The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

Keywords

Mg alloys / fatigue behavior / microstructure / crack initiation / deformation mechanism

Cite this article

Download citation ▾
B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review. Front. Mech. Eng., 2019, 14(1): 113-127 DOI:10.1007/s11465-018-0482-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45

[2]

Mayer H, Papakyriacou M, Zettl B, Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25(3): 245–256

[3]

Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244

[4]

Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582

[5]

Xu D, Liu L, Xu Y, The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985–994

[6]

Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224

[7]

Lv F, Yang F, Duan Q, Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation. International Journal of Fatigue, 2011, 33(5): 672–682

[8]

Yang F, Yin S, Li S, Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Materials Science and Engineering: A, 2008, 491(1–2): 131–136

[9]

Uematsu Y, Kakiuchi T, Tamada K, EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84: 1–8

[10]

Yu D, Zhang D, Sun J, High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Materials Science and Engineering: A, 2016, 662: 1–8

[11]

Wang S, Xu D, Wang B, Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6(1): 23955

[12]

Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336

[13]

Xu D, Han E. Relationship between fatigue crack initiation and activated {102} twins in as-extruded pure magnesium. Scripta Materialia, 2013, 69(9): 702–705

[14]

Xu D, Liu L, Xu Y, The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454(1–2): 123–128

[15]

Xu D, Liu L, Xu Y, The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56(1): 1–4

[16]

Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162

[17]

Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24(12): 1255–1260

[18]

Wang B, Xu D, Dong J, Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar. Scripta Materialia, 2014, 88: 5–8

[19]

Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289

[20]

Sajuri Z B, Miyashita Y, Hosokai Y, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198–209

[21]

Horstemeyer M F, Yang N, Gall K, High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327–1336

[22]

Mayer H, Lipowsky H, Papakyriacou M, Application of ultrasound for fatigue testing of lightweight alloys. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 591–599

[23]

Bae D H, Kim S H, Kim D H, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356

[24]

Li Z, Fu P, Peng L, Comparison of high cycle fatigue behaviors of Mg-3Nd-0.2Zn-Zr alloy prepared by different casting processes. Materials Science and Engineering: A, 2013, 579: 170–179

[25]

Wang S, Xu D, Wang B, Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy. Materials & Design, 2015, 84: 185–193

[26]

Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298

[27]

Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036

[28]

Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379

[29]

Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502

[30]

Man J, Obrtlik K, Blochwitz C, Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Materialia, 2002, 50(15): 3767–3780

[31]

Polák J, Man J, Vystavel T, The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Materials Science and Engineering: A, 2009, 517(1–2): 204–211

[32]

Yin S, Yang F, Yang X, The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Materials Science and Engineering: A, 2008, 494(1–2): 397–400

[33]

Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218

[34]

Obara T, Yoshinga H, Morozumi S. {112̄2}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853

[35]

Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919

[36]

Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826

[37]

Lahaie D, Embury J D, Chadwick M M, A note on the deformation of fine grained magnesium alloys. Scripta Metallurgica et Materialia, 1992, 27(2): 139–142

[38]

Barnett M R, Keshavarz Z, Beer A G, Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004, 52(17): 5093–5103

[39]

Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698

[40]

Li Z, Wang Q, Luo A, High cycle fatigue of cast Mg-3Nd-0.2Zn magnesium alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 44(11): 5202–5215

[41]

Li Z, Fu P, Peng L, Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Materials Science and Engineering: A, 2013, 565: 250–257

[42]

Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459

[43]

Dong J, Liu W C, Song X, Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy. Materials Science and Engineering: A, 2010, 527(21–22): 6053–6063

[44]

Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

AI Summary AI Mindmap
PDF (1520KB)

3039

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/