RESEARCH ARTICLE

A decomposition approach to the design of a multiferroic memory bit

  • Ruben ACEVEDO ,
  • Cheng-Yen LIANG ,
  • Gregory P. CARMAN ,
  • Abdon E. SEPULVEDA
Expand
  • Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, CA 90095-1597, USA

Received date: 26 Oct 2016

Accepted date: 28 Feb 2017

Published date: 19 Jun 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

Cite this article

Ruben ACEVEDO , Cheng-Yen LIANG , Gregory P. CARMAN , Abdon E. SEPULVEDA . A decomposition approach to the design of a multiferroic memory bit[J]. Frontiers of Mechanical Engineering, 2017 , 12(2) : 215 -223 . DOI: 10.1007/s11465-017-0446-x

Acknowledgements

This work was supported by both UCLA’s Center for Excellence in Engineering and Diversity (CEED) Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP) scholarship funded by the Semiconductor Research Cooperation (SRC) Education Alliance (Grant No. 2009-UR-2035-G), and by the National Science Foundation (NSF) Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS) Cooperative Agreement Award EEC-1160504.
1
Wang K L, Alzate J G, Khalili Amiri P. Low-power non-volatile spintronic memory: STT-RAM and beyond. Journal of Physics D: Applied Physics, 2013, 46(7): 074003 

DOI

2
Pertsev N A, Kohlstedt H. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology, 2010, 21(47): 475202

DOI

3
Tiercelin N, Dusch Y, Preobrazhensky V, Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. Journal of Applied Physics, 2011, 109(7): 07D726

DOI

4
Dusch Y, Tiercelin N, Klimov A, Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor. Journal of Applied Physics, 2013, 113(17): 17C719

DOI

5
Cui J, Hockel J L, Nordeen P K,  A method to control magnetism in individual strain-mediated magnetoelectric islands. Applied Physics Letters, 2013, 103(23): 232905

DOI

6
Gibiansky L V, Torquato S. Optimal design of 1-3 composite piezoelectrics. Structural Optimization, 1997, 13(1): 23–28

DOI

7
Ruiz D, Bellido J C, Donoso A. Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Structural and Multidisciplinary Optimization, 2016, 53(4): 715–730

DOI

8
Donoso A, Bellido J C. Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Structural and Multidisciplinary Optimization, 2009, 38(4): 347–356

DOI

9
Zhang X, Kang Z, Li M. Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Structural and Multidisciplinary Optimization, 2014, 50(5): 799–814

DOI

10
Schmit L A, Farshi B. Some approximation concepts for structural synthesis. AIAA Journal, 1974, 12(5): 692–699 

DOI

11
Schmit L A, Miura H. Approximation Concepts for Efficient Structural Analysis. NASA Contractor Report 2552. 1976

12
Barthelemy J F, Haftka R T. Approximation concepts for optimum structural design—A review. Structural Optimization, 1993, 5(3): 129–144

DOI

13
Toropov V V, Filatov A A, Polynkin A A. Multiparameter structural optimization using FEM and multipoint explicit approximations. Structural Optimization, 1993, 6(1): 7–14

DOI

14
Sepulveda A E, Schmit L A. Approximation-based global optimization strategy for structural synthesis. AIAA Journal, 1993, 31(1): 180–188

DOI

15
Park Y S, Lee S H, Park G J. A study of direct vs. approximation methods in structural optimization. Structural Optimization, 1995, 10(1): 64–66

DOI

16
Sepulveda A E, Thomas H. Global optimization using accurate approximations in design synthesis. Structural Optimization, 1996, 12(4): 251–256

DOI

17
Abspoel S J, Etman L F P, Vervoort J, Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization, 2001, 22(2): 125–139

DOI

18
Shu Y C, Lin M P, Wu K C. Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials, 2004, 36(10): 975–997

DOI

19
Zhang J X, Chen L Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Materialia, 2005, 53(9): 2845–2855

DOI

20
Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd ed. Hoboken: Wiley-IEEE Press, 2009

21
O’Handley R C. Modern Magnetic Materials: Principles and Applications. New York: Wiley, 1999

22
Baňas L U. Adaptive techniques for Landau-Lifshitz-Gilbert equation with magnetostriction. Journal of Computational and Applied Mathematics, 2008, 215(2): 304–310 

DOI

23
Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 2004, 40(6): 3443–3449

DOI

24
Fredkin D R, Koehler T R. Hybrid method for computing demagnetizing fields. IEEE Transactions on Magnetics, 1990, 26(2): 415–417

DOI

25
Szambolics H, Toussaint J C, Buda-Prejbeanu L D, Innovative weak formulation for the Landau-Lifshitz-Gilbert equations. IEEE Transactions on Magnetics, 2008, 44(11): 3153–3156

DOI

26
Liang C Y, Keller S M, Sepulveda A E, Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—Analysis. Journal of Applied Physics, 2014, 116(12): 123909

DOI

27
Biswas A K, Bandyopadhyay S, Atulasimha J. Complete magnetization reversal in a magnetostrictive nanomagnet with voltage-generated stress: A reliable energy-efficient non-volatile magneto-elastic memory. Applied Physics Letters, 2014, 105(7): 072408

DOI

28
Biswas A K, Bandyopadhyay S, Atulasimha J. Energy-efficient magnetoelastic non-volatile memory. Applied Physics Letters, 2014, 104(23): 232403

DOI

29
Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society A: Mathematical, 1948, 240(826): 599–642

DOI

30
COMSOL Multiphysics. 2017. Retrieved from http://www.comsol.com/

Outlines

/