A decomposition approach to the design of a multiferroic memory bit

Ruben ACEVEDO, Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA

PDF(258 KB)
PDF(258 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (2) : 215-223. DOI: 10.1007/s11465-017-0446-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A decomposition approach to the design of a multiferroic memory bit

Author information +
History +

Abstract

The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

Keywords

multiferroics / nano memory / piezoelectric / optimization

Cite this article

Download citation ▾
Ruben ACEVEDO, Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA. A decomposition approach to the design of a multiferroic memory bit. Front. Mech. Eng., 2017, 12(2): 215‒223 https://doi.org/10.1007/s11465-017-0446-x

References

[1]
Wang K L, Alzate J G, Khalili Amiri P. Low-power non-volatile spintronic memory: STT-RAM and beyond. Journal of Physics D: Applied Physics, 2013, 46(7): 074003 
CrossRef Google scholar
[2]
Pertsev N A, Kohlstedt H. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology, 2010, 21(47): 475202
CrossRef Google scholar
[3]
Tiercelin N, Dusch Y, Preobrazhensky V, Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. Journal of Applied Physics, 2011, 109(7): 07D726
CrossRef Google scholar
[4]
Dusch Y, Tiercelin N, Klimov A, Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor. Journal of Applied Physics, 2013, 113(17): 17C719
CrossRef Google scholar
[5]
Cui J, Hockel J L, Nordeen P K,  A method to control magnetism in individual strain-mediated magnetoelectric islands. Applied Physics Letters, 2013, 103(23): 232905
CrossRef Google scholar
[6]
Gibiansky L V, Torquato S. Optimal design of 1-3 composite piezoelectrics. Structural Optimization, 1997, 13(1): 23–28
CrossRef Google scholar
[7]
Ruiz D, Bellido J C, Donoso A. Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Structural and Multidisciplinary Optimization, 2016, 53(4): 715–730
CrossRef Google scholar
[8]
Donoso A, Bellido J C. Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Structural and Multidisciplinary Optimization, 2009, 38(4): 347–356
CrossRef Google scholar
[9]
Zhang X, Kang Z, Li M. Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Structural and Multidisciplinary Optimization, 2014, 50(5): 799–814
CrossRef Google scholar
[10]
Schmit L A, Farshi B. Some approximation concepts for structural synthesis. AIAA Journal, 1974, 12(5): 692–699 
CrossRef Google scholar
[11]
Schmit L A, Miura H. Approximation Concepts for Efficient Structural Analysis. NASA Contractor Report 2552. 1976
[12]
Barthelemy J F, Haftka R T. Approximation concepts for optimum structural design—A review. Structural Optimization, 1993, 5(3): 129–144
CrossRef Google scholar
[13]
Toropov V V, Filatov A A, Polynkin A A. Multiparameter structural optimization using FEM and multipoint explicit approximations. Structural Optimization, 1993, 6(1): 7–14
CrossRef Google scholar
[14]
Sepulveda A E, Schmit L A. Approximation-based global optimization strategy for structural synthesis. AIAA Journal, 1993, 31(1): 180–188
CrossRef Google scholar
[15]
Park Y S, Lee S H, Park G J. A study of direct vs. approximation methods in structural optimization. Structural Optimization, 1995, 10(1): 64–66
CrossRef Google scholar
[16]
Sepulveda A E, Thomas H. Global optimization using accurate approximations in design synthesis. Structural Optimization, 1996, 12(4): 251–256
CrossRef Google scholar
[17]
Abspoel S J, Etman L F P, Vervoort J, Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization, 2001, 22(2): 125–139
CrossRef Google scholar
[18]
Shu Y C, Lin M P, Wu K C. Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials, 2004, 36(10): 975–997
CrossRef Google scholar
[19]
Zhang J X, Chen L Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Materialia, 2005, 53(9): 2845–2855
CrossRef Google scholar
[20]
Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd ed. Hoboken: Wiley-IEEE Press, 2009
[21]
O’Handley R C. Modern Magnetic Materials: Principles and Applications. New York: Wiley, 1999
[22]
Baňas L U. Adaptive techniques for Landau-Lifshitz-Gilbert equation with magnetostriction. Journal of Computational and Applied Mathematics, 2008, 215(2): 304–310 
CrossRef Google scholar
[23]
Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 2004, 40(6): 3443–3449
CrossRef Google scholar
[24]
Fredkin D R, Koehler T R. Hybrid method for computing demagnetizing fields. IEEE Transactions on Magnetics, 1990, 26(2): 415–417
CrossRef Google scholar
[25]
Szambolics H, Toussaint J C, Buda-Prejbeanu L D, Innovative weak formulation for the Landau-Lifshitz-Gilbert equations. IEEE Transactions on Magnetics, 2008, 44(11): 3153–3156
CrossRef Google scholar
[26]
Liang C Y, Keller S M, Sepulveda A E, Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—Analysis. Journal of Applied Physics, 2014, 116(12): 123909
CrossRef Google scholar
[27]
Biswas A K, Bandyopadhyay S, Atulasimha J. Complete magnetization reversal in a magnetostrictive nanomagnet with voltage-generated stress: A reliable energy-efficient non-volatile magneto-elastic memory. Applied Physics Letters, 2014, 105(7): 072408
CrossRef Google scholar
[28]
Biswas A K, Bandyopadhyay S, Atulasimha J. Energy-efficient magnetoelastic non-volatile memory. Applied Physics Letters, 2014, 104(23): 232403
CrossRef Google scholar
[29]
Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society A: Mathematical, 1948, 240(826): 599–642
CrossRef Google scholar
[30]
COMSOL Multiphysics. 2017. Retrieved from http://www.comsol.com/

Acknowledgements

This work was supported by both UCLA’s Center for Excellence in Engineering and Diversity (CEED) Research Intensive Series in Engineering for Underrepresented Populations (RISE-UP) scholarship funded by the Semiconductor Research Cooperation (SRC) Education Alliance (Grant No. 2009-UR-2035-G), and by the National Science Foundation (NSF) Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS) Cooperative Agreement Award EEC-1160504.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/