A decomposition approach to the design of a multiferroic memory bit

Ruben ACEVEDO , Cheng-Yen LIANG , Gregory P. CARMAN , Abdon E. SEPULVEDA

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (2) : 215 -223.

PDF (258KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (2) : 215 -223. DOI: 10.1007/s11465-017-0446-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A decomposition approach to the design of a multiferroic memory bit

Author information +
History +
PDF (258KB)

Abstract

The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.

Keywords

multiferroics / nano memory / piezoelectric / optimization

Cite this article

Download citation ▾
Ruben ACEVEDO, Cheng-Yen LIANG, Gregory P. CARMAN, Abdon E. SEPULVEDA. A decomposition approach to the design of a multiferroic memory bit. Front. Mech. Eng., 2017, 12(2): 215-223 DOI:10.1007/s11465-017-0446-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang K LAlzate J GKhalili Amiri P. Low-power non-volatile spintronic memory: STT-RAM and beyond. Journal of Physics D: Applied Physics201346(7): 074003 

[2]

Pertsev N AKohlstedt H. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology201021(47): 475202

[3]

Tiercelin NDusch YPreobrazhensky VMagnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. Journal of Applied Physics2011109(7): 07D726

[4]

Dusch YTiercelin NKlimov AStress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor. Journal of Applied Physics2013113(17): 17C719

[5]

Cui JHockel J LNordeen P K A method to control magnetism in individual strain-mediated magnetoelectric islands. Applied Physics Letters2013103(23): 232905

[6]

Gibiansky L VTorquato S. Optimal design of 1-3 composite piezoelectrics. Structural Optimization199713(1): 23–28

[7]

Ruiz DBellido J CDonoso A. Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Structural and Multidisciplinary Optimization201653(4): 715–730

[8]

Donoso ABellido J C. Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Structural and Multidisciplinary Optimization200938(4): 347–356

[9]

Zhang XKang ZLi M. Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Structural and Multidisciplinary Optimization201450(5): 799–814

[10]

Schmit L AFarshi B. Some approximation concepts for structural synthesis. AIAA Journal197412(5): 692–699 

[11]

Schmit L AMiura H. Approximation Concepts for Efficient Structural Analysis. NASA Contractor Report 25521976

[12]

Barthelemy J FHaftka R T. Approximation concepts for optimum structural design—A review. Structural Optimization19935(3): 129–144

[13]

Toropov V VFilatov A APolynkin A A. Multiparameter structural optimization using FEM and multipoint explicit approximations. Structural Optimization19936(1): 7–14

[14]

Sepulveda A ESchmit L A. Approximation-based global optimization strategy for structural synthesis. AIAA Journal199331(1): 180–188

[15]

Park Y SLee S HPark G J. A study of direct vs. approximation methods in structural optimization. Structural Optimization199510(1): 64–66

[16]

Sepulveda A EThomas H. Global optimization using accurate approximations in design synthesis. Structural Optimization199612(4): 251–256

[17]

Abspoel S JEtman L F PVervoort JSimulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization200122(2): 125–139

[18]

Shu Y CLin M PWu K C. Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mechanics of Materials200436(10): 975–997

[19]

Zhang J XChen L Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Materialia200553(9): 2845–2855

[20]

Cullity B DGraham C D. Introduction to Magnetic Materials. 2nd ed. Hoboken: Wiley-IEEE Press2009

[21]

O’Handley R C. Modern Magnetic Materials: Principles and Applications. New York: Wiley1999

[22]

Baňas L U. Adaptive techniques for Landau-Lifshitz-Gilbert equation with magnetostriction. Journal of Computational and Applied Mathematics2008215(2): 304–310 

[23]

Gilbert T L. A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics200440(6): 3443–3449

[24]

Fredkin D RKoehler T R. Hybrid method for computing demagnetizing fields. IEEE Transactions on Magnetics199026(2): 415–417

[25]

Szambolics HToussaint J CBuda-Prejbeanu L DInnovative weak formulation for the Landau-Lifshitz-Gilbert equations. IEEE Transactions on Magnetics200844(11): 3153–3156

[26]

Liang C YKeller S MSepulveda A EElectrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—Analysis. Journal of Applied Physics2014116(12): 123909

[27]

Biswas A KBandyopadhyay SAtulasimha J. Complete magnetization reversal in a magnetostrictive nanomagnet with voltage-generated stress: A reliable energy-efficient non-volatile magneto-elastic memory. Applied Physics Letters2014105(7): 072408

[28]

Biswas A KBandyopadhyay SAtulasimha J. Energy-efficient magnetoelastic non-volatile memory. Applied Physics Letters2014104(23): 232403

[29]

Stoner E CWohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society A: Mathematical, 1948240(826): 599–642

[30]

COMSOL Multiphysics. 2017. Retrieved from 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (258KB)

2173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/