RESEARCH ARTICLE

Weak characteristic information extraction from early fault of wind turbine generator gearbox

  • Xiaoli XU ,
  • Xiuli LIU
Expand
  • Key Laboratory of Modern Measurement & Control Technology (Ministry of Education), Beijing Information Science and Technology University, Beijing 100192, China

Received date: 14 Jul 2016

Accepted date: 06 Dec 2016

Published date: 04 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on µ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and µ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

Cite this article

Xiaoli XU , Xiuli LIU . Weak characteristic information extraction from early fault of wind turbine generator gearbox[J]. Frontiers of Mechanical Engineering, 2017 , 12(3) : 357 -366 . DOI: 10.1007/s11465-017-0423-4

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China (Grant Nos. 51275052 and 51105041), and the Key Project Supported by Beijing Natural Science Foundation (Grant No. 3131002).
1
Wang G, He Z, Chen X,  Basic research on machinery fault diagnosis—What is the prescription. Journal of Mechanical Engineering, 2013, 49(1): 63–72 (in Chinese)

2
Xu X, Wang H. Large Rotating Machinery Running Trend Forecasting. Beijing: Science Press, 2011 (in Chinese)

3
Xu X, Jiang Z, Ren B,  Extract method of flue gas generator set state feature weak information based on Birgé-Massart threshold. Journal of Mechanical Engineering, 2012, 48(12): 7–12 (in Chinese)

4
Man Z, Wang W, Khoo S,  Optimal sinusoidal modeling of gear mesh vibration signals for gear diagnosis and prognosis. Mechanical Systems and Signal Processing, 2012, 33: 256–274

DOI

5
Lv Z, Zhang W, Xu J. A denoising method based singular spectrum and its application in machine fault diagnosis. Chinese Journal of Mechanical Engineering, 1999, 35(3): 85–88

6
Chen J, Zhang L, Duan L,  Diagnosis of liquid valve based on undecimated lifting scheme packet and singular value decomposition. Journal of Mechanical Engineering, 2011, 47(9): 72–77 (in Chinese) 

DOI

7
Liu Y, Zhang J, Lin J,  Application of improved LMD, SVD technique and RVM to fault diagnosis of diesel valve trains. Transactions of Tianjin University, 2015, 21(4): 304–311

DOI

8
Yu Z, Sun Y, Jin W. A novel generalized demodulation approach for multi-component signals. Signal Processing, 2016, 118: 188–202

DOI

9
Zhao X, Ye B, Chen T. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe. Journal of Mechanical Engineering, 2010, 46(1): 100–108 (in Chinese) 

DOI

10
Zhong Z, Zhang B, Durrani T S,  Nonlinear signal processing for vocal folds damage detection based on heterogeneous sensor network. Signal Processing, 2016, 126(S1): 125–133

DOI

11
Zeng M, Yang Y, Zheng J, μ-SVD based denoising method and its application to gear fault diagnosis. Journal of Mechanical Engineering, 2015, 51(3): 95–103 (in Chinese) 

DOI

12
Zhu S, Qiao Z, Yang Z. An improved method for the extraction of weak signal based on SVD and EMD. Measurement & Control Technology, 2014, 33(1): 60–62

13
Jiang W, Zheng Z, Zhu Y,  Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis. Mechanical Systems and Signal Processing, 2015, 58–59: 179–205

DOI

14
Sun W, Xiong B, Huang J,  Fault diagnosis of a rolling bearing using wavelet packet de-noising and LMD. Journal of Vibration and Shock, 2012, 31(18): 153–156 (in Chinese)

15
Morzfeld M, Ajavakom N, Ma F. Diagonal dominance of damping and the decoupling approximation in linear vibratory systems. Journal of Sound and Vibration, 2009, 320(1–2): 406–420

DOI

16
Wu Z, Cheng J, Yu Y, Adaptive characteristic-scale decomposition method and its application. China Mechanical Engineering, 2015, 42(23): 7–15 (in Chinese) 

DOI

17
Wang B, Ren Z, Wen B. Fault diagnoses method of rotating machines based on nonlinear. Chinese Journal of Mechanical Engineering, 2012, 48(5): 63–69

DOI

18
Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 1997, 110(1–2): 43–50

DOI

19
Miao L, Ren W, Hu Y, Separating temperature effect from dynamic strain measurements of a bridge based on analytical mode decomposition method. China Mechanical Engineering, 2012, 31(21): 6–10 (in Chinese)

20
Wang H, Li X, Wang G,  Research on failure of wind turbine gearbox and recent development of its design and manufacturing technologies. China Mechanical Engineering, 2013, 24(11): 1542–1549 (in Chinese)

21
Vanhollebeke F, Peeters P, Helsen J,  Large scale validation of a flexible multibody wind turbine gearbox model. Journal of Computational and Nonlinear Dynamics, 2015, 10(4): 041006

DOI

Outlines

/