Weak characteristic information extraction from early fault of wind turbine generator gearbox

Xiaoli XU , Xiuli LIU

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 357 -366.

PDF (595KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 357 -366. DOI: 10.1007/s11465-017-0423-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Weak characteristic information extraction from early fault of wind turbine generator gearbox

Author information +
History +
PDF (595KB)

Abstract

Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on µ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and µ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

Keywords

wind turbine generator gearbox / µ-singular value decomposition / local mean decomposition / weak characteristic information extraction / early fault warning

Cite this article

Download citation ▾
Xiaoli XU, Xiuli LIU. Weak characteristic information extraction from early fault of wind turbine generator gearbox. Front. Mech. Eng., 2017, 12(3): 357-366 DOI:10.1007/s11465-017-0423-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang GHe ZChen X Basic research on machinery fault diagnosis—What is the prescription. Journal of Mechanical Engineering201349(1): 63–72 (in Chinese)

[2]

Xu XWang H. Large Rotating Machinery Running Trend Forecasting. Beijing: Science Press2011 (in Chinese)

[3]

Xu XJiang ZRen B Extract method of flue gas generator set state feature weak information based on Birgé-Massart threshold. Journal of Mechanical Engineering201248(12): 7–12 (in Chinese)

[4]

Man ZWang WKhoo S Optimal sinusoidal modeling of gear mesh vibration signals for gear diagnosis and prognosis. Mechanical Systems and Signal Processing201233: 256–274

[5]

Lv ZZhang WXu J. A denoising method based singular spectrum and its application in machine fault diagnosis. Chinese Journal of Mechanical Engineering199935(3): 85–88

[6]

Chen J, Zhang L, Duan L,  Diagnosis of liquid valve based on undecimated lifting scheme packet and singular value decomposition. Journal of Mechanical Engineering201147(9): 72–77 (in Chinese) 

[7]

Liu YZhang JLin J Application of improved LMD, SVD technique and RVM to fault diagnosis of diesel valve trains. Transactions of Tianjin University201521(4): 304–311

[8]

Yu ZSun YJin W. A novel generalized demodulation approach for multi-component signals. Signal Processing2016118: 188–202

[9]

Zhao XYe BChen T. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe. Journal of Mechanical Engineering201046(1): 100–108 (in Chinese) 

[10]

Zhong ZZhang BDurrani T S Nonlinear signal processing for vocal folds damage detection based on heterogeneous sensor network. Signal Processing2016126(S1): 125–133

[11]

Zeng MYang YZheng Jμ-SVD based denoising method and its application to gear fault diagnosis. Journal of Mechanical Engineering201551(3): 95–103 (in Chinese) 

[12]

Zhu SQiao ZYang Z. An improved method for the extraction of weak signal based on SVD and EMD. Measurement & Control Technology201433(1): 60–62

[13]

Jiang WZheng ZZhu Y Demodulation for hydraulic pump fault signals based on local mean decomposition and improved adaptive multiscale morphology analysis. Mechanical Systems and Signal Processing20155859: 179–205

[14]

Sun WXiong BHuang J Fault diagnosis of a rolling bearing using wavelet packet de-noising and LMD. Journal of Vibration and Shock201231(18): 153–156 (in Chinese)

[15]

Morzfeld MAjavakom NMa F. Diagonal dominance of damping and the decoupling approximation in linear vibratory systems. Journal of Sound and Vibration2009320(1–2): 406–420

[16]

Wu ZCheng JYu Y, Adaptive characteristic-scale decomposition method and its application. China Mechanical Engineering201542(23): 7–15 (in Chinese) 

[17]

Wang BRen ZWen B. Fault diagnoses method of rotating machines based on nonlinear. Chinese Journal of Mechanical Engineering201248(5): 63–69

[18]

Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena1997110(1–2): 43–50

[19]

Miao LRen WHu Y, Separating temperature effect from dynamic strain measurements of a bridge based on analytical mode decomposition method. China Mechanical Engineering201231(21): 6–10 (in Chinese)

[20]

Wang HLi XWang G Research on failure of wind turbine gearbox and recent development of its design and manufacturing technologies. China Mechanical Engineering201324(11): 1542–1549 (in Chinese)

[21]

Vanhollebeke FPeeters PHelsen J Large scale validation of a flexible multibody wind turbine gearbox model. Journal of Computational and Nonlinear Dynamics201510(4): 041006

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (595KB)

4971

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/