REVIEW ARTICLE

Development and application of high-end aerospace MEMS

  • Weizheng YUAN
Expand
  • Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Xi’an 710072, China; Key Laboratory of Micro/Nano Electromechanical Systems, Xi’an 710072, China; Department of Microsystem Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 23 Oct 2016

Accepted date: 08 Dec 2016

Published date: 31 Oct 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper introduces the design and manufacturing technology of aerospace microelectromechanical systems (MEMS) characterized by high performance, multi-variety, and small batch. Moreover, several kinds of special MEMS devices with high precision, high reliability, and environmental adaptability, as well as their typical applications in the fields of aeronautics and aerospace, are presented.

Cite this article

Weizheng YUAN . Development and application of high-end aerospace MEMS[J]. Frontiers of Mechanical Engineering, 2017 , 12(4) : 567 -573 . DOI: 10.1007/s11465-017-0424-3

Acknowledgment

The author sincerely thanks all the researchers and postgraduates who participated in the corresponding projects in the Micro-Nano System Laboratory of NWPU. The author is also grateful for the support given by the National Natural Science Foundation, the Ministry of Science and Technology, the Army General Armaments Department, and the State Administration for Science and Technology for National Defense.
1
Chang H, Yuan  W. Pan-structured MEMS Integrated Design Method. Xi’an: Northwestern Polytechnical University Press, 2010 (in Chinese)

2
Yuan W, Chang  H, Li W , . Application of an optimization methodology for multidisciplinary system design of microgyroscopes. Microsystem Technologies, 2006, 12(4): 315–323

DOI

3
Xu J, Yuan  W, Chang H , . Angularly parameterized macromodel extraction for unconstrained microstructures. Journal of Micromechanics and Microengineering, 2008, 18(11): 115034

DOI

4
Qiao D, Chen  X, Ren Y , . A micro nuclear battery based on SiC Schottky barrier diode. Journal of Microelectromechanical Systems, 2011, 20(3): 685–690

DOI

5
Yuan W, Chang  H, Li W , . Application of an optimization methodology for multidisciplinary system design of microgyroscopes. Microsystem Technologies, 2006, 12(4): 315–323

DOI

6
Yu Y, Yuan  W, Qiao D . Electromechanical characterization of a new micro programmable blazed grating by laser Doppler vibrometry. Microsystem Technologies, 2009, 15(6): 853–858

DOI

7
Chang H, Xie  J, Fu Q , . Micromachined inertial measurement unit fabricated by a SOI process with selective roughening under structures. Micro & Nano Letters, 2011, 6(7): 486–489

DOI

8
Ma B, Ren  J, Deng J , . Flexible thermal sensor array on PI film substrate for underwater applications. In: Proceedings of the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2010, 679–682 

DOI

9
Lv H, Jiang  C, Xiang Z , . Design of a micro floating element shear stress sensor. Flow Measurement and Instrumentation, 2013, 30: 66–74

DOI

10
Ren S, Yuan  W, Qiao D , . A micromachined pressure sensor with integrated resonator operating at atmospheric pressure. Sensors, 2013, 13(12): 17006–17024

DOI

11
Wang S, Ma  B, Deng J , . Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film. Microsystem Technologies, 2015, 21(5): 1053–1059 

DOI

12
Xia C, Qiao  D, Zeng Q , . The squeeze-film air damping of circular and elliptical micro-torsion mirrors. Microfluidics and Nanofluidics, 2015, 19(3): 585–593

DOI

13
Ma B, Ma  C. A MEMS surface fence for wall shear stress measurement with high sensitivity. Microsystem Technologies, 2016, 22(2): 239–246

DOI

Outlines

/