RESEARCH ARTICLE

LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature

  • Zhihua ZHANG ,
  • Huichen YU ,
  • Chengli DONG
Expand
  • Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 15 Jul 2015

Accepted date: 10 Oct 2015

Published date: 03 Dec 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Low cycle fatigue tests were conducted on the single crystal nickel-based superalloy, DD6, with different crystallographic orientations (i.e., [001], [011], and [111]) and strain dwell types (i.e., tensile, compressive, and balanced types) at a certain high temperature. Given the material anisotropy and mean stress, both orientation factor and stress range were introduced to the Smith, Watson, and Topper (SWT) stress model to predict the fatigue life. Experimental results indicated that the fatigue properties of DD6 depend on both crystallographic orientation and loading types. The fatigue life of the tensile, compressive, and balanced strain dwell tests are shorter than those of continuous cycling tests without strain dwell because of the important creep effect. The predicted results of the proposed modified SWT stress method agree well with the experimental data.

Cite this article

Zhihua ZHANG , Huichen YU , Chengli DONG . LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature[J]. Frontiers of Mechanical Engineering, 2015 , 10(4) : 418 -423 . DOI: 10.1007/s11465-015-0362-x

Acknowledgements

The financial support for this work from the National Natural Science Foundation of China (Grant No. 51341001) is appreciated.
1
Li S, Smith D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 1—Cyclic mechanical response. Fatigue & Fracture of Engineering Materials & Structure, 1995, 18(5): 617–629

DOI

2
Versnyder F L, Shank M E. Development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering, 1970, 6(4): 213–247

DOI

3
Ma X, Shi H, Gu J, . Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy. Acta Mechanica Solida Sinica, 2008, 21(4): 289–297

4
Li S, Smith D J. Development of anisotropic constitutive model for single-crystal superalloy for combined fatigue and creep loading. International Journal of Mechanical Sciences, 1998, 40(10): 937–948

DOI

5
Yue Z, Yang Z, Lu Z. Life prediction model for a nickel-base single crystal superalloy DD3. Chinese Journal of Aeronautics, 2002, 15(4): 239–243

DOI

6
Li S, Ellison E G, Smith D J. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys. The Journal of Strain Analysis for Engineering Design, 1994, 29(2): 147–153

DOI

7
Yu H, Li Y, Zhang S, . LCF behavior and life evaluation of a single crystal nickel base superalloy under different dwell conditions. In: Proceedings of 28th International congress of the Aeronautical Sciences. 2012, 1–8

8
Dong C, Yu H, Li Y, . Life modeling of anisotropic fatigue behavior of a single crystal nickel-base superalloy. International Journal of Fatigue, 2014, 61: 21–27

DOI

9
Li S, Smith D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 2—Fatigue-creep life behaviour. Fatigue & Fracture of Engineering Materials & Structure, 1995, 18(5): 631–643

DOI

10
Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals. Journal of Materials, 1970, 5: 767–778

11
Ince A, Glinka G. A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structure, 2011, 34(11): 854–867

DOI

Outlines

/