LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature

Zhihua ZHANG , Huichen YU , Chengli DONG

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 418 -423.

PDF (508KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 418 -423. DOI: 10.1007/s11465-015-0362-x
RESEARCH ARTICLE
RESEARCH ARTICLE

LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature

Author information +
History +
PDF (508KB)

Abstract

Low cycle fatigue tests were conducted on the single crystal nickel-based superalloy, DD6, with different crystallographic orientations (i.e., [001], [011], and [111]) and strain dwell types (i.e., tensile, compressive, and balanced types) at a certain high temperature. Given the material anisotropy and mean stress, both orientation factor and stress range were introduced to the Smith, Watson, and Topper (SWT) stress model to predict the fatigue life. Experimental results indicated that the fatigue properties of DD6 depend on both crystallographic orientation and loading types. The fatigue life of the tensile, compressive, and balanced strain dwell tests are shorter than those of continuous cycling tests without strain dwell because of the important creep effect. The predicted results of the proposed modified SWT stress method agree well with the experimental data.

Keywords

single crystal superalloy / low cycle fatigue (LCF) / crystallographic orientation / strain dwell / life prediction

Cite this article

Download citation ▾
Zhihua ZHANG, Huichen YU, Chengli DONG. LCF behavior and life prediction method of a single crystal nickel-based superalloy at high temperature. Front. Mech. Eng., 2015, 10(4): 418-423 DOI:10.1007/s11465-015-0362-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li SSmith D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 1—Cyclic mechanical response. Fatigue & Fracture of Engineering Materials & Structure199518(5): 617–629

[2]

Versnyder F LShank M E. Development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering19706(4): 213–247

[3]

Ma XShi HGu J. Temperature effect on low-cycle fatigue behavior of nickel-based single crystalline superalloy. Acta Mechanica Solida Sinica200821(4): 289–297

[4]

Li SSmith D J. Development of anisotropic constitutive model for single-crystal superalloy for combined fatigue and creep loading. International Journal of Mechanical Sciences199840(10): 937–948

[5]

Yue ZYang ZLu Z. Life prediction model for a nickel-base single crystal superalloy DD3. Chinese Journal of Aeronautics200215(4): 239–243

[6]

Li SEllison E GSmith D J. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys. The Journal of Strain Analysis for Engineering Design199429(2): 147–153

[7]

Yu HLi YZhang S. LCF behavior and life evaluation of a single crystal nickel base superalloy under different dwell conditions. In: Proceedings of 28th International congress of the Aeronautical Sciences2012, 1–8

[8]

Dong CYu HLi Y. Life modeling of anisotropic fatigue behavior of a single crystal nickel-base superalloy. International Journal of Fatigue201461: 21–27

[9]

Li SSmith D J. High temperature fatigue-creep behaviour of single crystal SRR99 nickel base superalloys: Part 2—Fatigue-creep life behaviour. Fatigue & Fracture of Engineering Materials & Structure199518(5): 631–643

[10]

Smith K NWatson PTopper T H. A stress-strain function for the fatigue of metals. Journal of Materials19705: 767–778

[11]

Ince AGlinka G. A modification of Morrow and Smith-Watson-Topper mean stress correction models. Fatigue & Fracture of Engineering Materials & Structure201134(11): 854–867

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (508KB)

2723

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/