RESEARCH ARTICLE

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

  • Jorge Alberto Rodriguez DURAN , 1 ,
  • Ronney Mancebo BOLOY 2 ,
  • Rafael Raider LEONI 3
Expand
  • 1. Mechanical Engineering Department, Federal Fluminense University, Volta Redonda 27255-125, Brazil
  • 2. Mechanical Engineering Department, Federal Center of Technological Education, Angra dos Reis 23953-030, Brazil
  • 3. Mechanical Engineer, Structural Data Acquisition & Fatigue Analysis Engineer, Resende 27511-970, Brazil

Received date: 25 Jan 2015

Accepted date: 15 Jun 2015

Published date: 23 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The well-known fatigue crack growth (FCG) curves are two-parameter dependents. The range of the stress intensity factor ∆K and the load ratio R are the parameters normally used for describing these curves. For engineering purposes, the mathematical representation of these curves should be integrated between the initial and final crack sizes in order to obtain the safety factors for stresses and life. First of all, it is necessary to reduce the dependence of the FCG curves to only one parameter. ∆K is almost always selected and, in these conditions, considered as the crack driving force. Using experimental data from literature, the present paper shows how to perform multiple regression analyses using the traditional Walker approach and the more recent unified approach. The correlations so obtained are graphically analyzed in three dimensions. Numerical examples of crack growth analysis for cracks growing under nominal stresses of constant amplitude in smooth and notched geometries are performed, assuming an identical material component as that of the available experimental data. The resulting curves of crack size versus number of cycles (a vs. N) are then compared. The two models give approximately the same (a vs. N) curves in both geometries. Differences between the behaviors of the (a vs. N) curves in smooth and notched geometries are highlighted, and the reasons for these particular behaviors are discussed.

Cite this article

Jorge Alberto Rodriguez DURAN , Ronney Mancebo BOLOY , Rafael Raider LEONI . Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads[J]. Frontiers of Mechanical Engineering, 2015 , 10(3) : 255 -262 . DOI: 10.1007/s11465-015-0342-1

1
De Castro J T P, Landim R V, Leite J C C, . Prediction of notch sensitivity effects in fatigue and in environmentally assisted cracking. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(2): 161–179

DOI

2
Janssen M M, Zuidema J, Wanhill R J H. Fracture Mechanics. 2nd ed. Delft: VSSD, 2006

3
Lazzarin P, Tovo R. A notch intensity factor approach to the stress analysis of welds. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9): 1089–1103

DOI

4
Atzori B, Lazzarin G, Meneghetti G. Fatigue strength assessment of welded joints: From the integration of Paris’ law to a synthesis based on the notch stress intensity factors of the uncracked geometries. Engineering Fracture Mechanics, 2008, 75(3−4): 364–378

DOI

5
Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Engineering Failure Analysis, 2011, 18(4): 1223–1232

DOI

6
Luke M, Varfolomeev I, Lutkepohl K, . Fatigue crack growth in railway axles: Assessment concept and validation tests. Engineering Fracture Mechanics, 2011, 78(5): 714–730

DOI

7
Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Rosenfeld M, ed. Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462. 1970, 1–14

8
Sadananda K, Vasudevan A K. Short crack growth and internal stresses. International Journal of Fatigue, 1997, 19(93): 99–108

DOI

9
Sadananda K, Vasudevan A K. Analysis of small crack growth behavior using unified approach. In: Ravichandran K S, Murakami Y, Ritchie R, eds. Small fatigue cracks: Mechanics, Mechanisms and Applications. Elsevier, <?Pub Caret1?>1998

10
Dinda S, Kujawski D. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters. Engineering Fracture Mechanics, 2004, 71(12): 1779–1790

DOI

11
Sadananda K, Vasudevan A K. Fatigue crack growth mechanisms in steels. International Journal of Fatigue, 2003, 25(9−11): 899–914

DOI

12
Sadananda K, Vasudevan A K. Crack tip driving forces and crack growth representation under fatigue. International Journal of Fatigue, 2004, 26(1): 39–47

DOI

13
Dowling N E. Mean stress effects in strain-life fatigue. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(12): 1004–1019

DOI

14
Miller M S, Gallagher J P. An analysis of several fatigue crack growth rate (FCGR) descriptions. In: Hudak S J, Bucci R J, eds. Fatigue Crack Growth Measurement and Data Analysis. ASTM, 1981, 205–251

15
Lipson C, Narendra J S. Statistical Design and Analysis of Engineering Experiments. New York: McGraw-Hill, 1973

16
Castro J T P, Meggiolaro M A. Fadiga: Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço, CreateSpace, 2009 (in Portuguese)

17
Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. 3nd ed. New York: ASME Press, 2000

Outlines

/