Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN , Ronney Mancebo BOLOY , Rafael Raider LEONI

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 255 -262.

PDF (1069KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 255 -262. DOI: 10.1007/s11465-015-0342-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Author information +
History +
PDF (1069KB)

Abstract

The well-known fatigue crack growth (FCG) curves are two-parameter dependents. The range of the stress intensity factor ∆K and the load ratio R are the parameters normally used for describing these curves. For engineering purposes, the mathematical representation of these curves should be integrated between the initial and final crack sizes in order to obtain the safety factors for stresses and life. First of all, it is necessary to reduce the dependence of the FCG curves to only one parameter. ∆K is almost always selected and, in these conditions, considered as the crack driving force. Using experimental data from literature, the present paper shows how to perform multiple regression analyses using the traditional Walker approach and the more recent unified approach. The correlations so obtained are graphically analyzed in three dimensions. Numerical examples of crack growth analysis for cracks growing under nominal stresses of constant amplitude in smooth and notched geometries are performed, assuming an identical material component as that of the available experimental data. The resulting curves of crack size versus number of cycles (a vs. N) are then compared. The two models give approximately the same (a vs. N) curves in both geometries. Differences between the behaviors of the (a vs. N) curves in smooth and notched geometries are highlighted, and the reasons for these particular behaviors are discussed.

Keywords

fatigue crack propagation modeling / life prediction / mean stress effects

Cite this article

Download citation ▾
Jorge Alberto Rodriguez DURAN, Ronney Mancebo BOLOY, Rafael Raider LEONI. Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads. Front. Mech. Eng., 2015, 10(3): 255-262 DOI:10.1007/s11465-015-0342-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Castro J T PLandim R VLeite J C C. Prediction of notch sensitivity effects in fatigue and in environmentally assisted cracking. Fatigue & Fracture of Engineering Materials & Structures201538(2): 161–179

[2]

Janssen M MZuidema JWanhill R J H. Fracture Mechanics. 2nd ed. Delft: VSSD, 2006

[3]

Lazzarin PTovo R. A notch intensity factor approach to the stress analysis of welds. Fatigue & Fracture of Engineering Materials & Structures199821(9): 1089–1103

[4]

Atzori BLazzarin GMeneghetti G. Fatigue strength assessment of welded joints: From the integration of Paris’ law to a synthesis based on the notch stress intensity factors of the uncracked geometries. Engineering Fracture Mechanics200875(3−4): 364–378

[5]

Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Engineering Failure Analysis201118(4): 1223–1232

[6]

Luke MVarfolomeev ILutkepohl K. Fatigue crack growth in railway axles: Assessment concept and validation tests. Engineering Fracture Mechanics201178(5): 714–730

[7]

Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Rosenfeld M, ed. Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 4621970, 1–14

[8]

Sadananda KVasudevan A K. Short crack growth and internal stresses. International Journal of Fatigue199719(93): 99–108

[9]

Sadananda KVasudevan A K. Analysis of small crack growth behavior using unified approach. In: Ravichandran K SMurakami YRitchie R, eds. Small fatigue cracks: Mechanics, Mechanisms and Applications. Elsevier, <?Pub Caret1?>1998

[10]

Dinda SKujawski D. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters. Engineering Fracture Mechanics200471(12): 1779–1790

[11]

Sadananda KVasudevan A K. Fatigue crack growth mechanisms in steels. International Journal of Fatigue200325(9−11): 899–914

[12]

Sadananda KVasudevan A K. Crack tip driving forces and crack growth representation under fatigue. International Journal of Fatigue200426(1): 39–47

[13]

Dowling N E. Mean stress effects in strain-life fatigue. Fatigue & Fracture of Engineering Materials & Structures200932(12): 1004–1019

[14]

Miller M SGallagher J P. An analysis of several fatigue crack growth rate (FCGR) descriptions. In: Hudak S JBucci R J, eds. Fatigue Crack Growth Measurement and Data Analysis. ASTM, 1981, 205–251

[15]

Lipson CNarendra J S. Statistical Design and Analysis of Engineering Experiments. New York: McGraw-Hill, 1973

[16]

Castro J T PMeggiolaro M A. Fadiga: Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço, CreateSpace, 2009 (in Portuguese)

[17]

Tada HParis P CIrwin G R. The Stress Analysis of Cracks Handbook. 3nd ed. New York: ASME Press, 2000

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1069KB)

3681

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/