Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Jorge Alberto Rodriguez DURAN, Ronney Mancebo BOLOY, Rafael Raider LEONI

PDF(1069 KB)
PDF(1069 KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 255-262. DOI: 10.1007/s11465-015-0342-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads

Author information +
History +

Abstract

The well-known fatigue crack growth (FCG) curves are two-parameter dependents. The range of the stress intensity factor ∆K and the load ratio R are the parameters normally used for describing these curves. For engineering purposes, the mathematical representation of these curves should be integrated between the initial and final crack sizes in order to obtain the safety factors for stresses and life. First of all, it is necessary to reduce the dependence of the FCG curves to only one parameter. ∆K is almost always selected and, in these conditions, considered as the crack driving force. Using experimental data from literature, the present paper shows how to perform multiple regression analyses using the traditional Walker approach and the more recent unified approach. The correlations so obtained are graphically analyzed in three dimensions. Numerical examples of crack growth analysis for cracks growing under nominal stresses of constant amplitude in smooth and notched geometries are performed, assuming an identical material component as that of the available experimental data. The resulting curves of crack size versus number of cycles (a vs. N) are then compared. The two models give approximately the same (a vs. N) curves in both geometries. Differences between the behaviors of the (a vs. N) curves in smooth and notched geometries are highlighted, and the reasons for these particular behaviors are discussed.

Keywords

fatigue crack propagation modeling / life prediction / mean stress effects

Cite this article

Download citation ▾
Jorge Alberto Rodriguez DURAN, Ronney Mancebo BOLOY, Rafael Raider LEONI. Some remarks on the engineering application of the fatigue crack growth approach under nonzero mean loads. Front. Mech. Eng., 2015, 10(3): 255‒262 https://doi.org/10.1007/s11465-015-0342-1

References

[1]
De Castro J T P, Landim R V, Leite J C C, . Prediction of notch sensitivity effects in fatigue and in environmentally assisted cracking. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(2): 161–179
CrossRef Google scholar
[2]
Janssen M M, Zuidema J, Wanhill R J H. Fracture Mechanics. 2nd ed. Delft: VSSD, 2006
[3]
Lazzarin P, Tovo R. A notch intensity factor approach to the stress analysis of welds. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9): 1089–1103
CrossRef Google scholar
[4]
Atzori B, Lazzarin G, Meneghetti G. Fatigue strength assessment of welded joints: From the integration of Paris’ law to a synthesis based on the notch stress intensity factors of the uncracked geometries. Engineering Fracture Mechanics, 2008, 75(3−4): 364–378
CrossRef Google scholar
[5]
Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue. Engineering Failure Analysis, 2011, 18(4): 1223–1232
CrossRef Google scholar
[6]
Luke M, Varfolomeev I, Lutkepohl K, . Fatigue crack growth in railway axles: Assessment concept and validation tests. Engineering Fracture Mechanics, 2011, 78(5): 714–730
CrossRef Google scholar
[7]
Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Rosenfeld M, ed. Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462. 1970, 1–14
[8]
Sadananda K, Vasudevan A K. Short crack growth and internal stresses. International Journal of Fatigue, 1997, 19(93): 99–108
CrossRef Google scholar
[9]
Sadananda K, Vasudevan A K. Analysis of small crack growth behavior using unified approach. In: Ravichandran K S, Murakami Y, Ritchie R, eds. Small fatigue cracks: Mechanics, Mechanisms and Applications. Elsevier, <?Pub Caret1?>1998
[10]
Dinda S, Kujawski D. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters. Engineering Fracture Mechanics, 2004, 71(12): 1779–1790
CrossRef Google scholar
[11]
Sadananda K, Vasudevan A K. Fatigue crack growth mechanisms in steels. International Journal of Fatigue, 2003, 25(9−11): 899–914
CrossRef Google scholar
[12]
Sadananda K, Vasudevan A K. Crack tip driving forces and crack growth representation under fatigue. International Journal of Fatigue, 2004, 26(1): 39–47
CrossRef Google scholar
[13]
Dowling N E. Mean stress effects in strain-life fatigue. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(12): 1004–1019
CrossRef Google scholar
[14]
Miller M S, Gallagher J P. An analysis of several fatigue crack growth rate (FCGR) descriptions. In: Hudak S J, Bucci R J, eds. Fatigue Crack Growth Measurement and Data Analysis. ASTM, 1981, 205–251
[15]
Lipson C, Narendra J S. Statistical Design and Analysis of Engineering Experiments. New York: McGraw-Hill, 1973
[16]
Castro J T P, Meggiolaro M A. Fadiga: Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço, CreateSpace, 2009 (in Portuguese)
[17]
Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks Handbook. 3nd ed. New York: ASME Press, 2000

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1069 KB)

Accesses

Citations

Detail

Sections
Recommended

/