RESEARCH ARTICLE

Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

  • Muhammad Farhan AUSAF ,
  • Liang GAO ,
  • Xinyu LI
Expand
  • State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 04 May 2015

Accepted date: 15 Jul 2015

Published date: 03 Dec 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

Cite this article

Muhammad Farhan AUSAF , Liang GAO , Xinyu LI . Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm[J]. Frontiers of Mechanical Engineering, 2015 , 10(4) : 392 -404 . DOI: 10.1007/s11465-015-0353-y

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51375004, 51435009 and 51121002.
1
Halevi G, Weill R. Principles of Process Planning: A Logical Approach. Rotterdam: Springer, 1995 

2
Niebel B W. Mechanized process selection for planning new designs. In: ASME 33rd Annual Meeting collected papers, 1965, 65(4): 737

3
Conway R W, Maxwell W L, Miller L W. Theory of scheduling. Cranbuty: Addison-Wesley, 1967

4
Chryssolouris G, Chan S, Cobb W. Decision making on the factory floor: An integrated approach to process planning and scheduling. Robotics and Computer-integrated Manufacturing, 1984, 1(3–4): 315–319

DOI

5
Mamalis A, Malagardis I, Kambouris K. On-line integration of a process planning module with production scheduling. International Journal of Advanced Manufacturing Technology, 1996, 12(5): 330–338

DOI

6
Zhang J, Gao L, Chan F T,  A holonic architecture of the concurrent integrated process planning system. Journal of Materials Processing Technology, 2003, 139(1–3): 267–272

DOI

7
Wang L, Hao Q, Shen W. A novel function block based integration approach to process planning and scheduling with execution control. International Journal of Manufacturing Technology and Management, 2007, 11(2): 228–250

DOI

8
Chryssolouris G, Chan S, Suh N P. An integrated approach to process planning and scheduling. CIRP Annals, 1985, 34(1): 413–417

DOI

9
Min L, Li B, Zhang S. Modeling integrated CAPP/PPS systems. Computers & Industrial Engineering, 2004, 46(2): 275–283

DOI

10
Kumar M, Rajotia S. Integration of process planning and scheduling in a job shop environment. International Journal of Advanced Manufacturing Technology, 2006, 28(1–2): 109–116

DOI

11
Yang Y N, Parsaei H R, Leep H R. A prototype of a feature-based multiple-alternative process planning system with scheduling verification. Computers & Industrial Engineering, 2001, 39(1–2): 109–124

DOI

12
Grabowik C, Kalinowski K, Monica Z. Integration of the CAD/CAPP/PPC systems. Journal of Materials Processing Technology, 2005, 164–165: 1358–1368

DOI

13
Morad N, Zalzala A. Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing, 1999, 10(2): 169–179

DOI

14
Palmer G J. A simulated annealing approach to integrated production scheduling. Journal of Intelligent Manufacturing, 1996, 7(3): 163–176

DOI

15
Kim Y K, Park K, Ko J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Computers & Operations Research, 2003, 30(8): 1151–1171

DOI

16
Li W, McMahon C A. A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing, 2007, 20(1): 80–95

DOI

17
Li X, Gao L, Zhang G,  A genetic algorithm for integration of process planning and scheduling problem. In: Xiong C, Liu H, Huang Y, , eds. Intelligent Robotics and Applications. Berlin: Springer, 2008, 495–502

18
Q L, Lv S. An improved genetic algorithm for integrated process planning and scheduling. The International Journal of Advanced Manufacturing Technology, 2012, 58(5–8): 727–740

DOI

19
Li X, Gao L, Zhang C,  A review on integrated process planning and scheduling. International Journal of Manufacturing Research, 2010, 5(2): 161–180

DOI

20
Phanden R K, Jain A, Verma R. Integration of process planning and scheduling: A state-of-the-art review. International Journal of Computer Integrated Manufacturing, 2011, 24(6): 517–534

DOI

21
Tan W, Khoshnevis B. Integration of process planning and scheduling—Review. Journal of Intelligent Manufacturing, 2000, 11(1): 51–63

DOI

22
Wang L, Shen W, Hao Q. An overview of distributed process planning and its integration with scheduling. International Journal of Computer Applications in Technology, 2006, 26(1/2): 3–14

DOI

23
Baykasoğlu A, Özbakır L. Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system. International Journal of Production Economics, 2010, 124(2): 369–381

DOI

24
Wang Y F, Zhang Y, Fuh J Y H. A PSO-based multi-objective optimization approach to the integration of process planning and scheduling, In: 2010 8th IEEE International Conference on Control and Automation (ICCA). Xiamen: IEEE, 2010, 614–619

25
Rajkumar M, Asokan P, Page T,  A GRASP algorithm for the integration of process planning and scheduling in a flexible job-shop. International Journal of Manufacturing Research, 2010, 5(2): 230–251

DOI

26
Li X, Gao L, Li W. Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Expert Systems with Applications, 2012, 39(1): 288–297

DOI

27
Mohapatra P, Benyoucef L, Tiwari M. Integration of process planning and scheduling through adaptive setup planning: A multi-objective approach. International Journal of Production Research, 2013, 51(23–24): 7190–7208

DOI

28
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257–271

DOI

29
Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2012

30
Branke J, Deb K, Miettinen K,  Multiobjective Optimization: Interactive and Evolutionary Approaches. Berlin: Springer, 2008

31
Kis T, Kiritsis D, Xirouchakis P,  A Petri net model for integrated process and job shop production planning. Journal of Intelligent Manufacturing, 2000, 11(2): 191–207

DOI

32
Ho Y C, Moodie C L. Solving cell formation problems in a manufacturing environment with flexible processing and routeing capabilities. International Journal of Production Research, 1996, 34(10): 2901–2923

DOI

33
Chiang T, Fu L. Using dispatching rules for job shop scheduling with due date-baesd objectives. International Journal of Production Research, 2007, 45(14): 3245–3262

DOI

34
Deb K, Pratap A, Agarwal S,  A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6: 182–197

35
Wen X, Li X, Gao L,  Improved genetic algorithm with external archive maintenance for multi-objective integrated process planning and scheduling. In: Proceedings of IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Whistler: IEEE, 2013, 385–390 

DOI

36
Baykasoğlu A, Ozbakir L. A grammatical optimization approach for integrated process planning and scheduling. Journal of Intelligent Manufacturing, 2009, 20(2): 211–221

DOI

37
Jain A, Jain P, Singh I. An integrated scheme for process planning and scheduling in FMS. International Journal of Advanced Manufacturing Technology, 2006, 30(11–12): 1111–1118

DOI

38
Li X, Shao X, Gao L,  An effective hybrid algorithm for integrated process planning and scheduling. International Journal of Production Economics, 2010, 126(2): 289–298

DOI

39
Lian K, Zhang C, Gao L,  Integrated process planning and scheduling using an imperialist competitive algorithm. International Journal of Production Research, 2012, 50(15): 4326–4343

DOI

40
Wong T, Leung C, Mak K,  Integrated process planning and scheduling/rescheduling—An agent-based approach. International Journal of Production Research, 2006, 44(18–19): 3627–3655

DOI

41
Lee S, Moon I, Bae H,  Flexible job-shop scheduling problems with ‘AND’/‘OR’ precedence constraints. International Journal of Production Research, 2012, 50(7): 1979–2001

DOI

Outlines

/