Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

Muhammad Farhan AUSAF , Liang GAO , Xinyu LI

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 392 -404.

PDF (1665KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 392 -404. DOI: 10.1007/s11465-015-0353-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

Author information +
History +
PDF (1665KB)

Abstract

For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

Keywords

multi-objective optimization / integrated process planning and scheduling (IPPS) / dispatching rules / priority based optimization algorithm

Cite this article

Download citation ▾
Muhammad Farhan AUSAF, Liang GAO, Xinyu LI. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm. Front. Mech. Eng., 2015, 10(4): 392-404 DOI:10.1007/s11465-015-0353-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Halevi GWeill R. Principles of Process Planning: A Logical Approach. Rotterdam: Springer1995 

[2]

Niebel B W. Mechanized process selection for planning new designs. In: ASME 33rd Annual Meeting collected papers196565(4): 737

[3]

Conway R WMaxwell W LMiller L W. Theory of scheduling. Cranbuty: Addison-Wesley1967

[4]

Chryssolouris GChan SCobb W. Decision making on the factory floor: An integrated approach to process planning and scheduling. Robotics and Computer-integrated Manufacturing19841(3–4): 315–319

[5]

Mamalis AMalagardis IKambouris K. On-line integration of a process planning module with production scheduling. International Journal of Advanced Manufacturing Technology199612(5): 330–338

[6]

Zhang JGao LChan F T A holonic architecture of the concurrent integrated process planning system. Journal of Materials Processing Technology2003139(1–3): 267–272

[7]

Wang LHao QShen W. A novel function block based integration approach to process planning and scheduling with execution control. International Journal of Manufacturing Technology and Management200711(2): 228–250

[8]

Chryssolouris GChan SSuh N P. An integrated approach to process planning and scheduling. CIRP Annals198534(1): 413–417

[9]

Min LLi BZhang S. Modeling integrated CAPP/PPS systems. Computers & Industrial Engineering200446(2): 275–283

[10]

Kumar MRajotia S. Integration of process planning and scheduling in a job shop environment. International Journal of Advanced Manufacturing Technology200628(1–2): 109–116

[11]

Yang Y NParsaei H RLeep H R. A prototype of a feature-based multiple-alternative process planning system with scheduling verification. Computers & Industrial Engineering200139(1–2): 109–124

[12]

Grabowik CKalinowski KMonica Z. Integration of the CAD/CAPP/PPC systems. Journal of Materials Processing Technology2005164–165: 1358–1368

[13]

Morad NZalzala A. Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing199910(2): 169–179

[14]

Palmer G J. A simulated annealing approach to integrated production scheduling. Journal of Intelligent Manufacturing19967(3): 163–176

[15]

Kim Y KPark KKo J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Computers & Operations Research200330(8): 1151–1171

[16]

Li WMcMahon C A. A simulated annealing-based optimization approach for integrated process planning and scheduling. International Journal of Computer Integrated Manufacturing200720(1): 80–95

[17]

Li XGao LZhang G A genetic algorithm for integration of process planning and scheduling problem. In: Xiong CLiu HHuang Y, eds. Intelligent Robotics and Applications. Berlin: Springer, 2008, 495–502

[18]

Q LLv S. An improved genetic algorithm for integrated process planning and scheduling. The International Journal of Advanced Manufacturing Technology201258(5–8): 727–740

[19]

Li XGao LZhang C A review on integrated process planning and scheduling. International Journal of Manufacturing Research20105(2): 161–180

[20]

Phanden R KJain AVerma R. Integration of process planning and scheduling: A state-of-the-art review. International Journal of Computer Integrated Manufacturing201124(6): 517–534

[21]

Tan WKhoshnevis B. Integration of process planning and scheduling—Review. Journal of Intelligent Manufacturing200011(1): 51–63

[22]

Wang LShen WHao Q. An overview of distributed process planning and its integration with scheduling. International Journal of Computer Applications in Technology200626(1/2): 3–14

[23]

Baykasoğlu AÖzbakır L. Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system. International Journal of Production Economics2010124(2): 369–381

[24]

Wang Y FZhang YFuh J Y H. A PSO-based multi-objective optimization approach to the integration of process planning and scheduling, In: 2010 8th IEEE International Conference on Control and Automation (ICCA). Xiamen: IEEE, 2010, 614–619

[25]

Rajkumar MAsokan PPage T A GRASP algorithm for the integration of process planning and scheduling in a flexible job-shop. International Journal of Manufacturing Research20105(2): 230–251

[26]

Li XGao LLi W. Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Expert Systems with Applications201239(1): 288–297

[27]

Mohapatra PBenyoucef LTiwari M. Integration of process planning and scheduling through adaptive setup planning: A multi-objective approach. International Journal of Production Research201351(23–24): 7190–7208

[28]

Zitzler EThiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation19993(4): 257–271

[29]

Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2012

[30]

Branke JDeb KMiettinen K Multiobjective Optimization: Interactive and Evolutionary Approaches. Berlin: Springer, 2008

[31]

Kis TKiritsis DXirouchakis P A Petri net model for integrated process and job shop production planning. Journal of Intelligent Manufacturing200011(2): 191–207

[32]

Ho Y CMoodie C L. Solving cell formation problems in a manufacturing environment with flexible processing and routeing capabilities. International Journal of Production Research199634(10): 2901–2923

[33]

Chiang TFu L. Using dispatching rules for job shop scheduling with due date-baesd objectives. International Journal of Production Research200745(14): 3245–3262

[34]

Deb KPratap AAgarwal S A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation20026: 182–197

[35]

Wen XLi XGao L Improved genetic algorithm with external archive maintenance for multi-objective integrated process planning and scheduling. In: Proceedings of IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Whistler: IEEE, 2013, 385–390 

[36]

Baykasoğlu AOzbakir L. A grammatical optimization approach for integrated process planning and scheduling. Journal of Intelligent Manufacturing200920(2): 211–221

[37]

Jain AJain PSingh I. An integrated scheme for process planning and scheduling in FMS. International Journal of Advanced Manufacturing Technology200630(11–12): 1111–1118

[38]

Li XShao XGao L An effective hybrid algorithm for integrated process planning and scheduling. International Journal of Production Economics2010126(2): 289–298

[39]

Lian KZhang CGao L Integrated process planning and scheduling using an imperialist competitive algorithm. International Journal of Production Research201250(15): 4326–4343

[40]

Wong TLeung CMak K Integrated process planning and scheduling/rescheduling—An agent-based approach. International Journal of Production Research200644(18–19): 3627–3655

[41]

Lee SMoon IBae H Flexible job-shop scheduling problems with ‘AND’/‘OR’ precedence constraints. International Journal of Production Research201250(7): 1979–2001

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1665KB)

3478

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/