RESEARCH ARTICLE

A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator

  • Meiju YANG ,
  • Chunxia LI ,
  • Guoying GU ,
  • Limin ZHU
Expand
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 28 Dec 2014

Accepted date: 20 Jan 2015

Published date: 01 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, a novel rate-dependent Prandtl-Ishlinskii (P-I) model is proposed to characterize the rate-dependent hysteresis nonlinearity of piezoelectric actuators. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate-dependent hysteresis loops up to 1000 Hz.

Cite this article

Meiju YANG , Chunxia LI , Guoying GU , Limin ZHU . A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Frontiers of Mechanical Engineering, 2015 , 10(1) : 37 -42 . DOI: 10.1007/s11465-015-0326-1

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51405293) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130073110037).
1
Salapaka S, Salapaka M. Scanning probe microscopy. IEEE Control Systems, 2008, 28(2): 65–83

DOI

2
Leang K, Devasia S. Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics, 2006, 16(3–4): 141–158

DOI

3
Qin Y, Shirinzadeh B, Tian Y, Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control. Sensors and Actuators. A, Physical, 2013, 194: 95–105

DOI

4
Gawthrop P, Bhikkaji B, Moheimani S. Physical-model-based control of a piezoelectric tube for nano-scale positioning applications. Mechatronics, 2010, 20(1): 74–84

DOI

5
Yang M, Gu G, Zhu L. High-bandwidth tracking control of piezo-actuated nanopositioning stages using closed-loop input shaper. Mechatronics, 2014, 24(6): 724–733

DOI

6
Iamail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 2009, 16(2): 161–188

DOI

7
Xu Q, Li Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041011

DOI

8
Hu H, Ben Mrad R. On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics, 2003, 13(2): 85–94

DOI

9
Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European Journal of Control, 2003, 9(4): 407–418

DOI

10
Gu G, Yang M, Zhu L. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 065106

DOI PMID

11
Gu G, Zhu L, Su C. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1583–1595

DOI

12
Liu S, Su C. A note on the properties of a generalized Prandtl-Ishlinskii model. Smart Materials and Structures, 2011, 20(8): 087003

DOI

13
Ang W, Khosla P, Riviere C. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 134–142

DOI

14
Tan U X, Latt W T, Widjaja F, Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller. Sensors and Actuators. A, Physical, 2009, 150(1): 116–123

DOI PMID

15
Janaideh M, Su C, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Materials and Structures, 2008, 17(3): 035026

DOI

16
Janaideh M, Krejc P. Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1498–1507

DOI

17
Zhang G, Zhang C, Gu J. Modeling and control of rate-dependent hysteresis in piezoelectric actuators. In: Proceedings of the 32nd Chinese Control Conference (CCC). IEEE, 2013, 1929–1934

18
Janocha H, Kuhnen K. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and Actuators, 2000, 79(2): 83–89

DOI

19
Yang M, Gu G, Zhu L. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sensors and Actuators. A, Physical, 2013, 189: 254–265

DOI

20
Li C, Gu G, Yang M, Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Review of Scientific Instruments, 2013, 84(12): 125111

DOI PMID

Outlines

/