A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator

Meiju YANG, Chunxia LI, Guoying GU, Limin ZHU

PDF(726 KB)
PDF(726 KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (1) : 37-42. DOI: 10.1007/s11465-015-0326-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator

Author information +
History +

Abstract

In this paper, a novel rate-dependent Prandtl-Ishlinskii (P-I) model is proposed to characterize the rate-dependent hysteresis nonlinearity of piezoelectric actuators. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate-dependent hysteresis loops up to 1000 Hz.

Keywords

piezoelectric actuators / hysteresis / Prandtl-Ishlinskii / rate-dependent

Cite this article

Download citation ▾
Meiju YANG, Chunxia LI, Guoying GU, Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator. Front. Mech. Eng., 2015, 10(1): 37‒42 https://doi.org/10.1007/s11465-015-0326-1

References

[1]
Salapaka S, Salapaka M. Scanning probe microscopy. IEEE Control Systems, 2008, 28(2): 65–83
CrossRef Google scholar
[2]
Leang K, Devasia S. Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics, 2006, 16(3–4): 141–158
CrossRef Google scholar
[3]
Qin Y, Shirinzadeh B, Tian Y, Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control. Sensors and Actuators. A, Physical, 2013, 194: 95–105
CrossRef Google scholar
[4]
Gawthrop P, Bhikkaji B, Moheimani S. Physical-model-based control of a piezoelectric tube for nano-scale positioning applications. Mechatronics, 2010, 20(1): 74–84
CrossRef Google scholar
[5]
Yang M, Gu G, Zhu L. High-bandwidth tracking control of piezo-actuated nanopositioning stages using closed-loop input shaper. Mechatronics, 2014, 24(6): 724–733
CrossRef Google scholar
[6]
Iamail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 2009, 16(2): 161–188
CrossRef Google scholar
[7]
Xu Q, Li Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041011
CrossRef Google scholar
[8]
Hu H, Ben Mrad R. On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics, 2003, 13(2): 85–94
CrossRef Google scholar
[9]
Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European Journal of Control, 2003, 9(4): 407–418
CrossRef Google scholar
[10]
Gu G, Yang M, Zhu L. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 065106
CrossRef Pubmed Google scholar
[11]
Gu G, Zhu L, Su C. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1583–1595
CrossRef Google scholar
[12]
Liu S, Su C. A note on the properties of a generalized Prandtl-Ishlinskii model. Smart Materials and Structures, 2011, 20(8): 087003
CrossRef Google scholar
[13]
Ang W, Khosla P, Riviere C. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 134–142
CrossRef Google scholar
[14]
Tan U X, Latt W T, Widjaja F, Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller. Sensors and Actuators. A, Physical, 2009, 150(1): 116–123
CrossRef Pubmed Google scholar
[15]
Janaideh M, Su C, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Materials and Structures, 2008, 17(3): 035026
CrossRef Google scholar
[16]
Janaideh M, Krejc P. Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1498–1507
CrossRef Google scholar
[17]
Zhang G, Zhang C, Gu J. Modeling and control of rate-dependent hysteresis in piezoelectric actuators. In: Proceedings of the 32nd Chinese Control Conference (CCC). IEEE, 2013, 1929–1934
[18]
Janocha H, Kuhnen K. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and Actuators, 2000, 79(2): 83–89
CrossRef Google scholar
[19]
Yang M, Gu G, Zhu L. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sensors and Actuators. A, Physical, 2013, 189: 254–265
CrossRef Google scholar
[20]
Li C, Gu G, Yang M, Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Review of Scientific Instruments, 2013, 84(12): 125111
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51405293) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130073110037).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(726 KB)

Accesses

Citations

Detail

Sections
Recommended

/