
A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator
Meiju YANG, Chunxia LI, Guoying GU, Limin ZHU
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (1) : 37-42.
A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator
In this paper, a novel rate-dependent Prandtl-Ishlinskii (P-I) model is proposed to characterize the rate-dependent hysteresis nonlinearity of piezoelectric actuators. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate-dependent hysteresis loops up to 1000 Hz.
piezoelectric actuators / hysteresis / Prandtl-Ishlinskii / rate-dependent
[1] |
Salapaka S, Salapaka M. Scanning probe microscopy. IEEE Control Systems, 2008, 28(2): 65–83
CrossRef
Google scholar
|
[2] |
Leang K, Devasia S. Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics, 2006, 16(3–4): 141–158
CrossRef
Google scholar
|
[3] |
Qin Y, Shirinzadeh B, Tian Y,
CrossRef
Google scholar
|
[4] |
Gawthrop P, Bhikkaji B, Moheimani S. Physical-model-based control of a piezoelectric tube for nano-scale positioning applications. Mechatronics, 2010, 20(1): 74–84
CrossRef
Google scholar
|
[5] |
Yang M, Gu G, Zhu L. High-bandwidth tracking control of piezo-actuated nanopositioning stages using closed-loop input shaper. Mechatronics, 2014, 24(6): 724–733
CrossRef
Google scholar
|
[6] |
Iamail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 2009, 16(2): 161–188
CrossRef
Google scholar
|
[7] |
Xu Q, Li Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041011
CrossRef
Google scholar
|
[8] |
Hu H, Ben Mrad R. On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics, 2003, 13(2): 85–94
CrossRef
Google scholar
|
[9] |
Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European Journal of Control, 2003, 9(4): 407–418
CrossRef
Google scholar
|
[10] |
Gu G, Yang M, Zhu L. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 065106
CrossRef
Pubmed
Google scholar
|
[11] |
Gu G, Zhu L, Su C. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1583–1595
CrossRef
Google scholar
|
[12] |
Liu S, Su C. A note on the properties of a generalized Prandtl-Ishlinskii model. Smart Materials and Structures, 2011, 20(8): 087003
CrossRef
Google scholar
|
[13] |
Ang W, Khosla P, Riviere C. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 134–142
CrossRef
Google scholar
|
[14] |
Tan U X, Latt W T, Widjaja F,
CrossRef
Pubmed
Google scholar
|
[15] |
Janaideh M, Su C, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Materials and Structures, 2008, 17(3): 035026
CrossRef
Google scholar
|
[16] |
Janaideh M, Krejc P. Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1498–1507
CrossRef
Google scholar
|
[17] |
Zhang G, Zhang C, Gu J. Modeling and control of rate-dependent hysteresis in piezoelectric actuators. In: Proceedings of the 32nd Chinese Control Conference (CCC). IEEE, 2013, 1929–1934
|
[18] |
Janocha H, Kuhnen K. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and Actuators, 2000, 79(2): 83–89
CrossRef
Google scholar
|
[19] |
Yang M, Gu G, Zhu L. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sensors and Actuators. A, Physical, 2013, 189: 254–265
CrossRef
Google scholar
|
[20] |
Li C, Gu G, Yang M,
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |