Multi-Material magnetic field-assisted additive manufacturing system for flexible actuators with programmable magnetic arrangements

Yujie HUANG , Haonan SUN , Chengqian ZHANG , Ruoxiang GAO , Hongyao SHEN , Peng ZHAO

Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (2) : 16

PDF (5094KB)
Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (2) : 16 DOI: 10.1007/s11465-024-0788-0
RESEARCH ARTICLE

Multi-Material magnetic field-assisted additive manufacturing system for flexible actuators with programmable magnetic arrangements

Author information +
History +
PDF (5094KB)

Abstract

Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend. Among various manufacturing technologies, magnetic-assisted digital light processing (DLP) stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field. Current research on manufacturing magnetic flexible actuators mostly employs single materials, which limits the magnetic driving performance to some extent. Based on these characterizations, we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200 μm. The flexible actuators are printed using two materials with different mechanical and magnetic properties. Considering the interface connectivity of multi-material printing, the effect of interfaces on mechanical properties is also explored. Experimental results indicate good chemical affinity between the two materials we selected. The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures. In addition, we investigate the influence of the volume fraction of the magnetic part on deformation. Simulation and experimental results indicate that increasing the volume ratio (20% to 50%) of the magnetic structure can enhance the responsiveness of the actuator (more than 50%). Finally, we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements: a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions. These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.

Graphical abstract

Keywords

multi-material / magnetic field-assisted manufacturing / digital light processing / flexible actuators / magnetic arrangement

Cite this article

Download citation ▾
Yujie HUANG, Haonan SUN, Chengqian ZHANG, Ruoxiang GAO, Hongyao SHEN, Peng ZHAO. Multi-Material magnetic field-assisted additive manufacturing system for flexible actuators with programmable magnetic arrangements. Front. Mech. Eng., 2024, 19(2): 16 DOI:10.1007/s11465-024-0788-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y F , Ng C J X , Chen Z , Zhang W , Panjwani S , Kowsari K , Yang H Y , Ge Q . Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Advanced Materials Technologies, 2019, 4(10): 1900427

[2]

Dong Y , Wang L , Xia N , Yang Z X , Zhang C , Pan C F , Jin D , Zhang J C , Majidi C , Zhang L . Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Science Advances, 2022, 8(25): eabn8932

[3]

Kim Y , Parada G A , Liu S D , Zhao X H . Ferromagnetic soft continuum robots. Science Robotics, 2019, 4(33): eaax7329

[4]

Lu H J , Hong Y , Yang Y , Yang Z B , Shen Y J . Battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Advanced Science, 2020, 7(13): 2000069

[5]

Dai H Z , Zhang C Q , Pan C F , Hu H , Ji K P , Sun H N , Lyu C X , Tang D F , Li T F , Fu J Z , Zhao P . Split-type magnetic soft tactile sensor with 3D force decoupling. Advanced Materials, 2024, 36(11): 2310145

[6]

Hu X Y , Ge Z X , Wang X D , Jiao N D , Tung S , Liu L Q . Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites Part B: Engineering, 2022, 228: 109451

[7]

Lu H J , Zhang M , Yang Y Y , Huang Q , Fukuda T , Wang Z K , Shen Y J . A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 2018, 9(1): 3944

[8]

Wu Y D , Dong X G , Kim J K , Wang C X , Sitti M . Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Science Advances, 2022, 8(21): eabn3431

[9]

Kocak G , Tuncer C , Bütün V . pH-responsive polymers. Polymer Chemistry, 2017, 8(1): 144–176

[10]

Zhang Z Q , Wang R F , Yuan M F , Huang X Z , Ding C , Wu H P , Wang S L , Liu A P . Magnetically driven pH-responsive composite hydrogel for controlled drug delivery. Functional Materials Letters, 2022, 15(5): 2250022

[11]

Jin B J , Song H J , Jiang R Q , Song J Z , Zhao Q , Xie T . Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 2018, 4(1): eaao3865

[12]

Liu K K , Zhang Y , Cao H Q , Liu H N , Geng Y H , Yuan W H , Zhou J , Wu Z L , Shan G R , Bao Y Z , Zhao Q , Xie T , Pan P J . Programmable reversible shape transformation of hydrogels based on transient structural anisotropy. Advanced Materials, 2020, 32(28): 2001693

[13]

Wang D , Xu H P , Wang J Q , Jiang C R , Zhu X Y , Ge Q , Gu G Y . Design of 3D printed programmable horseshoe lattice structures based on a phase-evolution model. ACS Applied Materials & Interfaces, 2020, 12(19): 22146–22156

[14]

Zhang Y F , Zhang N B , Hingorani H , Ding N Y , Wang D , Yuan C , Zhang B , Gu G Y , Ge Q . Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials, 2019, 29(15): 1806698

[15]

Xu L L , Xue F H , Zheng H W , Ji Q X , Qiu C W , Chen Z , Zhao X , Li P Y , Hu Y , Peng Q Y , He X D . An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy, 2022, 103: 107848

[16]

Chang L F , Wang D P , Huang Z S , Wang C F , Torop J , Li B , Wang Y J , Hu Y , Aabloo A . A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric Conversion. Advanced Functional Materials, 2023, 33(6): 2212341

[17]

Zhang C C , Zhang H , Chen R F , Zhao L H , Wu H , Wang C W , Hu Y . A bioinspired programmable soft bilayer actuator based on aluminum exoskeleton. Advanced Materials Technologies, 2022, 7(9): 2200036

[18]

Wei H , Li K , Liu W G , Meng H , Zhang P X , Yan C Y . 3D printing of free-standing stretchable electrodes with tunable structure and stretchability. Advanced Engineering Materials, 2017, 19(11): 1700341

[19]

Xia N , Jin D D , Iacovacci V , Zhang L . 3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5(1): 012001

[20]

Tang D F , Zhang C Q , Sun H N , Dai H Z , Xie J , Fu J Z , Zhao P . Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy, 2021, 89: 106424

[21]

Zhang J C , Ren Z Y , Hu W Q , Soon R H , Yasa I C , Liu Z M , Sitti M . Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Science Robotics, 2021, 6(53): eabf0112

[22]

Ji Z Y , Yan C Y , Yu B , Wang X L , Zhou F . Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Advanced Materials Interfaces, 2017, 4(22): 1700629

[23]

Kim Y , Yuk H , Zhao R K , Chester S A , Zhao X H . Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709): 274–279

[24]

Qi S , Guo H Y , Fu J , Xie Y P , Zhu M , Yu M . 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Composites Science and Technology, 2020, 188: 107973

[25]

Xu T Q , Zhang J C , Salehizadeh M , Onaizah O , Diller E . Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 2019, 4(29): eaav4494

[26]

Sun H N , Zhang C Q , Pan C F , Hu Z Z , Huang Y J , Tang D F , Xie J , Dai H Z , Hu H , Li T F , Zhao P . Magnetic field-assisted manufacturing of groove-structured flexible actuators with enhanced performance. Additive Manufacturing, 2024, 80: 103979

[27]

Cresswell-Boyes A J , Barber A H , Mills D , Tatla A , Davis G R . Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy, 2018, 272(3): 207–212

[28]

Hamid O A , Eltaher H M , Sottile V , Yang J . 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Materials Science and Engineering: C, 2021, 120: 111707

[29]

Li F , Macdonald N P , Guijt R M , Breadmore M C . Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Analytical Chemistry, 2019, 91(3): 1758–1763

[30]

Lu Y F , Mantha S N , Crowder D C , Chinchilla S , Shah K N , Yun Y H , Wicker R B , Choi J W . Microstereolithography and characterization of poly (propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication, 2015, 7(4): 045001

[31]

Miri A K , Nieto D , Iglesias L , Goodarzi Hosseinabadi H , Maharjan S , Ruiz-Esparza G U , Khoshakhlagh P , Manbachi A , Dokmeci M R , Chen S C , Shin S R , Zhang Y S , Khademhosseini A . Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Advanced Materials, 2018, 30(27): 1800242

[32]

Roach D J , Hamel C M , Dunn C K , Johnson M V , Kuang X , Qi H J . The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 2019, 29: 100819

[33]

Ze Q J , Kuang X , Wu S , Wong J , Montgomery S M , Zhang R D , Kovitz J M , Yang F Y , Qi H J , Zhao R K . Magnetic shape memory polymers with integrated multifunctional shape manipulation. Advanced Materials, 2020, 32(4): 1906657

[34]

Zhang B , Li S Y , Hingorani H , Serjouei A , Larush L , Pawar A A , Goh W H , Sakhaei A H , Hashimoto M , Kowsari K , Magdassi S , Ge Q . Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B, 2018, 6(20): 3246–3253

[35]

Zhang Y, Chen H, Qiu S, Zhang Y, Zhu X. Multi-material integrated printing of reprogrammable magnetically actuated soft structure. In: International Conference on Intelligent Robotics and Applications. Singapore: Springer, 2023, 63–70

[36]

Hu Z Z , Zhang C Q , Sun H N , Ma X J , Zhao P . Length manipulation of hard magnetic particle chains under rotating magnetic fields. Sensors and Actuators A: Physical, 2023, 361: 114562

[37]

Hu Z Z , Zhang C Q , Sun H N , Dai H Z , Tang D F , Hu H , Li T F , Fu J Z , Zhao P . A microstructure enhancement method for hard magnetic particle chains based on magnetic field oscillation sieve. Materials & Design, 2024, 237: 112588

[38]

Lopes L R , Silva A F , Carneiro O S . Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Additive Manufacturing, 2018, 23: 45–52

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5094KB)

Supplementary files

FME-24008-OF-HY_suppl_1

2564

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/