Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics

Guofeng MA , Renke KANG , Zhigang DONG , Sen YIN , Yan BAO , Dongming GUO

Front. Mech. Eng. ›› 2020, Vol. 15 ›› Issue (4) : 538 -546.

PDF (1666KB)
Front. Mech. Eng. ›› 2020, Vol. 15 ›› Issue (4) : 538 -546. DOI: 10.1007/s11465-020-0598-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics

Author information +
History +
PDF (1666KB)

Abstract

Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

Keywords

longitudinal–torsional coupled / ultrasonically drilling / CFRP / thrust force / hole quality

Cite this article

Download citation ▾
Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO. Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics. Front. Mech. Eng., 2020, 15(4): 538-546 DOI:10.1007/s11465-020-0598-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chung D D L. Composite Materials: Science and Applications. 2nd ed. London: Springer, 2010, 30–32

[2]

Srivatsan T S. A review of: “Fundamentals of Composites Manufacturing: Materials, Methods and Applications” by A. Brent Strong. Materials and Manufacturing Processes, 1995, 10(5): 1121–1122

[3]

Davim J P, Reis P. Drilling carbon fiber reinforced plastics manufactured by autoclave-experimental and statistical study. Materials & Design, 2003, 24(5): 315–324

[4]

Singh A P, Sharma M, Singh I. A review of modeling and control during drilling of fiber reinforced plastic composites. Composites Part B, Engineering, 2013, 47: 118–125

[5]

Prabu V A, Kumaran S T, Uthayakumar M. Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite. Journal of Natural Fibers, 2017, 14(3): 450–457

[6]

Hocheng H, Tsao C C. Effects of special drill tools on drilling-induced delamination of composite materials. International Journal of Machine Tools and Manufacture, 2006, 46(12–13): 1403–1416

[7]

Sorrentino L, Turchetta S, Bellini C. In process monitoring of cutting temperature during the drilling of FRP laminate. Composite Structures, 2017, 168: 549–561

[8]

Li C, Xu J Y, Chen M, Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced air-cooling. Wear, 2019, 426–427: 1616–1623

[9]

Xu J, Mansori M E. Experimental studies on the cutting characteristics of hybrid CFRP/Ti stacks. Procedia Manufacturing, 2016, 5: 270–281

[10]

Liu D F, Tang Y J, Cong W L. A review of mechanical drilling for composite laminates. Composite Structures, 2012, 94(4): 1265–1279

[11]

Geng D X, Liu Y H, Shao Z Y, Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 2019, 216: 168–186

[12]

Makhdum F, Jennings L T, Roy A, Cutting forces in ultrasonically assisted drilling of carbon fiber reinforced plastics. Journal of Physics: Conference Series, 2012, 382: 012019

[13]

Lotfi M, Amini S. Experimental and numerical study of ultrasonically-assisted drilling. Ultrasonics, 2017, 75: 185–193

[14]

Debnath K, Singh I, Dvivedi A. Rotary mode ultrasonic drilling of glass fiber-reinforced epoxy laminates. Journal of Composite Materials, 2015, 49(8): 949–963

[15]

Phadnis V A, Makhdum F, Roy A, Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP, 2012, 1: 455–459

[16]

Arul S, Vijayaraghavan L, Malhotra S K, The effect of vibratory drilling on hole quality in polymeric composites. International Journal of Machine Tools and Manufacture, 2006, 46(3–4): 252–259

[17]

Makhdum F, Phadnis V A, Roy A, . Effect of ultrasonically-assisted drilling on carbon-fiber-reinforced plastics. Journal of Sound and Vibration, 2014, 333(23): 5939–5952

[18]

Sanda A, Arriola I, Garcia Navas V, Ultrasonically assisted drilling of carbon fiber reinforced plastics and Ti6Al4V. Journal of Manufacturing Processes, 2016, 22: 169–176

[19]

Xu W X, Zhang L C. On the mechanics and material removal mechanisms of vibration assisted cutting of unidirectional fiber-reinforced polymer composites. International Journal of Machine Tools and Manufacture, 2014, 80–81: 1–10

[20]

Geng D X, Zhang D Y, Li Z, Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics, 2017, 75: 80–90

[21]

Liu J, Zhang D Y, Qin L G, Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). International Journal of Machine Tools and Manufacture, 2012, 53(1): 141–150

[22]

Amini S, Soleimani M, Paktinat H. Effect of longitudinal-torsional vibration in ultrasonic-assisted drilling. Materials and Manufacturing Processes, 2017, 32(6): 616–622

[23]

Liu S, Shan X B, Cao W, A longitudinal-torsional composite ultrasonic vibrator with thread grooves. Ceramics International, 2017, 43: S214–S220

[24]

Niu Y, Jiao F, Zhao B, Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 2017, 93(9–12): 4345–4356

[25]

Wang J J, Feng P F, Zhang J, Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinal-torsional coupled vibration. Manufacturing Letters, 2018, 18: 1–5

[26]

Paktinat H, Amini S. Numerical and experimental studies of longitudinal and longitudinal-torsional vibrations in drilling of AISI 1045. International Journal of Advanced Manufacturing Technology, 2018, 94: 2577–2592

[27]

Wang F J, Cheng D, Zhao M, Influence of cooling air direction on tool wear and hole quality in CFRP drilling. Acta Materiae Compositae Sinica, 2019, 36(2): 410–417 (in Chinese)

[28]

Sadek A, Attia M H, Meshreki M, Characterization and optimization of vibration-assisted drilling of fiber reinforced epoxy laminates. CIRP Annals-Manufacturing Technology, 2013, 62(1): 91–94

[29]

Thirumalai Kumaran S, Ko T J, Li C, Rotary ultrasonic machining of woven CFRP composite in a cryogenic environment. Journal of Alloys and Compounds, 2017, 698: 984–993

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1666KB)

7889

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/