Hybrid forming mechanism of patternless casting and laser cladding

Zhongde SHAN, Fuzhen SUN, Yang LIU

PDF(5427 KB)
PDF(5427 KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (4) : 393-401. DOI: 10.1007/s11465-019-0550-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Hybrid forming mechanism of patternless casting and laser cladding

Author information +
History +

Abstract

In accordance with the requirement of manufacturing dies quickly and economically, a hybrid forming method of stamping dies for automobile panels is proposed. The method combines digital patternless casting and high-power laser cladding. An experimental study is conducted on the hybrid forming process and its trial production and application in the manufacturing of stamping dies for typical panels. Results prove that the laser cladding layer exceeds HRC60 (Rockwell hardness) and thus meets the production efficiency requirement of automobile dies. The rate of defects is well controlled. Compared with traditional technology, this technology has remarkable advantages and advancement.

Keywords

patternless casting / laser cladding / hybrid forming / rapid tooling

Cite this article

Download citation ▾
Zhongde SHAN, Fuzhen SUN, Yang LIU. Hybrid forming mechanism of patternless casting and laser cladding. Front. Mech. Eng., 2019, 14(4): 393‒401 https://doi.org/10.1007/s11465-019-0550-1

References

[1]
Zhang Y, Wu L M, Guo X Y, . Additive manufacturing of metallic materials: A review. Journal of Materials Engineering and Performance, 2018, 27(1): 1–13
CrossRef Google scholar
[2]
Le V T, Paris H. A life cycle assessment-based approach for evaluating the influence of total build height and batch size on the environmental performance of electron beam melting. International Journal of Advanced Manufacturing Technology, 2018, 98(1‒4): 275–288
CrossRef Google scholar
[3]
Zhang W. Research on microstructure and property of Fe-VC composite material made by laser cladding. Physics Procedia, 2012, 25: 200–204
CrossRef Google scholar
[4]
Gao W Y, Chang C, Li G, . Study on the laser cladding of FeCrNi coating. Optik, 2019, 178: 950–957
CrossRef Google scholar
[5]
Cordero Z C, Dinwiddie R B, Immel D, . Nucleation and growth of chimney pores during electron-beam additive manufacturing. Journal of Materials Science, 2017, 52(6): 3429–3435
CrossRef Google scholar
[6]
Fuchs J, Schneider C, Enzinger N. Wire-based additive manufacturing using an electron beam as heat source. Welding in the World, 2018, 62(2): 267–275
CrossRef Google scholar
[7]
Markl M, Ammer R, Rüde U, . Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam. International Journal of Advanced Manufacturing Technology, 2015, 78(1‒4): 239–247
CrossRef Google scholar
[8]
Hossain M S, Mireles J, Morton P, . Part re-registration during process interruption of electron beam melting additive manufacturing. International Journal of Advanced Manufacturing Technology, 2018, 96(1‒4): 337–344
CrossRef Google scholar
[9]
Wang Y H, Chen X Z, Konovalov S V. Additive manufacturing based on welding arc: A low-cost method. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2017, 11(6): 1317–1328
CrossRef Google scholar
[10]
Kim J, Lee W J, Park H W. The state of the art in the electron beam manufacturing processes. International Journal of Precision Engineering and Manufacturing, 2016, 17(11): 1575–1585
CrossRef Google scholar
[11]
Shan Z D, Qin S, Liu Q, . Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. International Journal of Precision Engineering and Manufacturing, 2012, 13(7): 1095–1100
CrossRef Google scholar
[12]
Shan Z D, Dong X L, Liu F. Study on manufacturing of sand mold by direct milling. In: Proceedings of the 3rd Seminar of Sino-Korea Cooperation on the Advanced Manufacturing Technology. 2008, 165–169
[13]
Liu H M, Hu Z Q, Qin X P, . Parameter optimization and experiment study of the sprocket repairing using laser cladding. International Journal of Advanced Manufacturing Technology, 2017, 91(9‒12): 3967–3975
CrossRef Google scholar
[14]
Li C, Yu Z B, Gao J X, . Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding. Surface and Coatings Technology, 2019, 357(15): 965–977
CrossRef Google scholar
[15]
Yu T B, Yang L, Zhao Y, . Experimental research and multi- response multi-parameter optimization of laser cladding Fe313. Optics & Laser Technology, 2018, 108: 321–332
CrossRef Google scholar
[16]
Arias-González F, del Val J, Comesaña R, . Production of phosphor bronze coatings by laser cladding. Procedia Manufacturing, 2017, 13: 177–182
CrossRef Google scholar
[17]
Juan Y F, Li J, Jiang Y Q, . Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into micro-structural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings. Applied Surface Science, 2019, 465(28): 700–714
CrossRef Google scholar
[18]
Dobrzański L A, Bonek M, Hajduczek E, . Structure and properties of laser alloyed gradient surface layers of the hot-work tool steels. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 31(2): 148–169
[19]
Gu D D, Ma C L, Xia M J, . A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing. Engineering, 2017, 3(5): 675–684
CrossRef Google scholar
[20]
Qvarnstrӧm H. Technical note: A mathematical formula for transformation between the steel hardness scales of Rockwell C and Vickers. Journal of Heat Treating, 1989, 7(1): 65–67 doi:10.1007/BF02833189

Acknowledgement

This study was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51525503).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(5427 KB)

Accesses

Citations

Detail

Sections
Recommended

/