Fabrication of micro/nano-structures by electrohydrodynamic jet technique
Dazhi WANG, Xiaojun ZHAO, Yigao LIN, Tongqun REN, Junsheng LIANG, Chong LIU, Liding WANG
Fabrication of micro/nano-structures by electrohydrodynamic jet technique
Electrohydrodynamic jet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includesE-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication of micro/nano-structures for micro/nano-electromechanical system devices. This technique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.
electrohydrodynamic jet deposition / electrohydrodynamic jet printing / micro/nano-structures / film
[1] |
Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914, 3(2): 69–91
CrossRef
Google scholar
|
[2] |
Ramsey R S, Ramsey J M. Generating electrospray from microchip devices using electroosmotic pumping. Analytical Chemistry, 1997, 69(6): 1174–1178
CrossRef
Google scholar
|
[3] |
Xue Q, Foret F, Dunayevskiy Y M ,
CrossRef
Google scholar
|
[4] |
Prasetyo F D, Yudistira H T, Nguyen V D,
CrossRef
Google scholar
|
[5] |
Corbin E A, Millet L J, Pikul J H,
CrossRef
Google scholar
|
[6] |
Zhang H B, Edirisinghe M J, Jayasinghe S N. Flow behaviour of dielectric liquids in an electric field. Journal of Fluid Mechanics, 2006, 558: 103–111
CrossRef
Google scholar
|
[7] |
Carswell D J, Milsted J.A new method for the preparation of thin films of radioactive material of thin films of radioactive material. Journal of Nuclear Energy (1954), 1957, 4(1): 51–54
CrossRef
Google scholar
|
[8] |
Bollini R, Sample S B, Seigal S D,
CrossRef
Google scholar
|
[9] |
Chen X, Jia L, Yin X ,
CrossRef
Google scholar
|
[10] |
Mei F, Chen D R. Operational modes of dual-capillary electrospraying and the formation of the stable compound cone-jet mode. Aerosol and Air Quality Research, 2008, 8(2): 218–232
|
[11] |
Chang M W, Stride E, Edirisinghe M . Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization. Journal of the Royal Society Interface, 2010, 7(Suppl4): S451–S460
CrossRef
Google scholar
|
[12] |
Mei F, Chen D R. Investigation of compound jet electrospray: Particle encapsulation. Physics of Fluids, 2007, 19(10): 103303
CrossRef
Google scholar
|
[13] |
Farook U, Stride E, Edirisinghe M J ,
CrossRef
Google scholar
|
[14] |
Jaworek A. Electrospray droplet sources for thin film deposition. Journal of Materials Science, 2007, 42(1): 266–297
CrossRef
Google scholar
|
[15] |
Vonnegut B, Neubauer R L. Production of monodisperse liquid particles by electrical atomization. Journal of Colloid Science, 1952, 7(6): 616–622
CrossRef
Google scholar
|
[16] |
Jaworek A, Machowski W, Krupa A ,
CrossRef
Google scholar
|
[17] |
Kulon J, Jaworek A, Machowski W ,
CrossRef
Google scholar
|
[18] |
Sato M, Miyazaki H, Sadakata M ,
|
[19] |
Sato M. The production of essentially uniform-sized liquid droplets in gaseous or immiscible liquid media under applied a.c. potential. Journal of Electrostatics, 1984, 15(2): 237–247
CrossRef
Google scholar
|
[20] |
Sato M. Formation of uniformly sized liquid droplets using spinning disk under applied electrostatic field. IEEE Transactions on Industry Applications, 1991, 27(2): 316–322
CrossRef
Google scholar
|
[21] |
Slamovich E B , Lange F F . Spherical zirconia particles via electrostatic atomization: Fabrication and sintering characteristics. Material Research Society Symposium Proceedings, 1988, 257–262
|
[22] |
Ambrus R, Radacsi N, Szunyogh T ,
CrossRef
Google scholar
|
[23] |
Hazeri N, Tavanai H, Moradi A R . Production and properties of electrosprayed sericin nanopowder. Science and Technology of Advanced Materials, 2016, 13(3): 035010
CrossRef
Google scholar
|
[24] |
Almería B, Gomez A. Electrospray synthesis of monodisperse polymer particles in a broad (60 nm–2 mm) diameter range: Guiding principles and formulation recipes. Journal of Colloid and Interface Science, 2014, 417: 121–130
CrossRef
Google scholar
|
[25] |
Suksamran T, Ngawhirunpat T, Rojanarata T ,
CrossRef
Google scholar
|
[26] |
Cao L, Luo J, Tu K ,
CrossRef
Google scholar
|
[27] |
Balachandran W, Machowski W, Ahmad C N . Electrostatic atomization of conducting liquids using AC superimposed on DC fields. IEEE Transactions on Industry Applications, 1994, 30(4): 850–855
CrossRef
Google scholar
|
[28] |
Dudout B, Marijnissen J C M, Scarlett B. Use of EHDA for the production of nanoparticles. Journal of Aerosol Science, 1999, 30(Suppl1): S687–S688
CrossRef
Google scholar
|
[29] |
Hogan C J Jr, Yun K M , Chen D R ,
CrossRef
Google scholar
|
[30] |
Lewis K C, Dohmeier D M, Jorgenson J W,
CrossRef
Google scholar
|
[31] |
Chen D R, Pui D, Kaufman Y H . Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 mm diameter range. Journal of Aerosol Science, 1995, 26(6): 963–977
CrossRef
Google scholar
|
[32] |
Meesters G M H , Vercoulen P H W , Marijnissen J C M ,
CrossRef
Google scholar
|
[33] |
Borra J P, Camelot D, Marijnissen J C M ,
CrossRef
Google scholar
|
[34] |
Moon J H, Yi G R, Yang S M,
CrossRef
Google scholar
|
[35] |
Hong S H, Moon J H, Lim J M,
CrossRef
Google scholar
|
[36] |
Tang K, Gomez A. Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. Journal of Aerosol Science, 1994, 25(6): 1237–1249
CrossRef
Google scholar
|
[37] |
Kim S G, Choi K H, Eun J H,
CrossRef
Google scholar
|
[38] |
Elidrissi B, Addou M, Regragui M ,
CrossRef
Google scholar
|
[39] |
Mahmood K, Park S B. Conductivity enhancement by fluorine doping in boron-doped ZnO thin films deposited by the electrospraying method. Journal of Crystal Growth, 2012, 361: 30–37
CrossRef
Google scholar
|
[40] |
Ni D, Yi W, Cao Z ,
|
[41] |
Ahire J J, Dicks L M T. Antimicrobial hyaluronic acid-cefoxitin sodium thin films produced by electrospraying. Current Microbiology, 2016, 73(2): 236–241
CrossRef
Google scholar
|
[42] |
Muhammad N M, Duraisamy N, Rahman K ,
CrossRef
Google scholar
|
[43] |
Zhou Q F, Chan H L W, Choy C L. PZT ceramic/ceramic 0–3 nanocomposite films for ultrasonic transducer applications. Thin Solid Films, 2000, 375(1–2): 95–99
CrossRef
Google scholar
|
[44] |
Jayasinghe S N , Edirisinghe M J , Wang D. Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization. Nanotechnology, 2004, 15(11): 1519–1523
CrossRef
Google scholar
|
[45] |
Chen Q Z, Boccaccini A R, Zhang H B,
CrossRef
Google scholar
|
[46] |
Sun D, Rocks S A, Wang D,
CrossRef
Google scholar
|
[47] |
Wang D, Edirisinghe M J, Dorey R A. Formation of PZT crack-free thick films by electrohydrodynamic atomization deposition. Journal of the European Ceramic Society, 2008, 28(14): 2739–2745
CrossRef
Google scholar
|
[48] |
Zhu T, Li C, Yang W ,
CrossRef
Google scholar
|
[49] |
Jayasinghe S N , Edirisinghe M J , De Wilde T . A novel ceramic printing technique based on electrostatic atomization of a suspension. Materials Research Innovations, 2002, 6(3): 92–95
CrossRef
Google scholar
|
[50] |
Jayasinghe S N , Edirisinghe M J . A novel process for simulataneous printing of multiple tracks from concentrated suspensions. Materials Research Innovations, 2003, 7(2): 62–64
CrossRef
Google scholar
|
[51] |
Wang D, Jayasinghe S N, Edirisinghe M J. High resolution print-patterning of a nano-suspension. Journal of Nanoparticle Research, 2005, 7(2–3): 301–306
CrossRef
Google scholar
|
[52] |
Chang S C, Liu J, Bharathan J ,
CrossRef
Google scholar
|
[53] |
Park J U, Hardy M, Kang S J ,
CrossRef
Google scholar
|
[54] |
Sutanto E, Tan Y, Onses M S ,
CrossRef
Google scholar
|
[55] |
Wang D, Edirisinghe M J, Jayasinghe S N. Solid freeform fabrication of thin-walled ceramic structures using an electrohydrodynamic jet. Journal of the American Ceramic Society, 2006, 89(5): 1727–1729
CrossRef
Google scholar
|
[56] |
An B W, Kim K, Lee H ,
CrossRef
Google scholar
|
[57] |
Wang D, Jayasinghe S N, Edirisinghe M J,
CrossRef
Google scholar
|
[58] |
Lee D Y, Shin Y S, Park S E,
CrossRef
Google scholar
|
[59] |
Yogi O, Kawakami T, Mizuno A . Properties of droplet formation made by cone jet using a novel capillary with an external electrode. Journal of Electrostatics, 2006, 64(7–9): 634–638
CrossRef
Google scholar
|
[60] |
Juraschek R, Röllgen F W. Pulsation phenomena during electrospray ionization. International Journal of Mass Spectrometry, 1998, 177(1): 1–15
CrossRef
Google scholar
|
[61] |
Kim J, Oh H, Kim S S . Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies. Journal of Aerosol Science, 2008, 39(9): 819–825
CrossRef
Google scholar
|
[62] |
Mishra S, Barton K L, Alleyne A G,
CrossRef
Google scholar
|
[63] |
Xu L, Wang X, Huang Y ,
CrossRef
Google scholar
|
[64] |
Chen C H, Saville D A, Aksay I A. Scaling laws for pulsed electrohydrodynamic drop formation. Applied Physics Letters, 2006, 89(12): 124103
CrossRef
Google scholar
|
[65] |
Kim Y J, Kim S Y, Lee J S,
CrossRef
Google scholar
|
[66] |
Stachewicz U, Yurteri C U, Marijnissen J C M,
CrossRef
Google scholar
|
[67] |
Wei C, Qin H, Ramírez-Iglesias N A,
CrossRef
Google scholar
|
[68] |
Perelaer J, Smith P J, Mager D,
CrossRef
Google scholar
|
[69] |
Klauk H. Organic thin-film transistors. Chemical Society Reviews, 2010, 39(7): 2643–2666
CrossRef
Google scholar
|
[70] |
Sekitani T, Someya T. Ambient electronics. Japanese Journal of Applied Physics, 2012, 51(10R): 100001
CrossRef
Google scholar
|
[71] |
Wang K, Paine M D, Stark J P W. Fully voltage-controlled electrohydrodynamic jet printing of conductive silver tracks with a sub-100 mm linewidth. Journal of Applied Physics, 2009, 106(2): 024907
CrossRef
Google scholar
|
[72] |
Rahman K, Ali K, Muhammad N M ,
CrossRef
Google scholar
|
[73] |
Son S, Lee S, Choi J . Fine metal line patterning on hydrophilic non-conductive substrates based on electrohydrodynamic printing and laser sintering. Journal of Electrostatics, 2014, 72(1): 70–75
CrossRef
Google scholar
|
[74] |
Lee S, Kim J, Choi J ,
CrossRef
Google scholar
|
[75] |
Jeong S, Lee J Y, Lee S S,
CrossRef
Google scholar
|
[76] |
Jeong S, Lee S H, Jo Y,
CrossRef
Google scholar
|
[77] |
Kwack Y J, Choi W S. Electrohydrodynamic jet spraying technique for oxide thin-film transistor. IEEE Electron Device Letters, 2013, 34(1): 78–80
CrossRef
Google scholar
|
[78] |
Lee Y G, Choi W S. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability. ACS Applied Materials & Interfaces, 2014, 6(14): 11167–11172
CrossRef
Google scholar
|
[79] |
Sekitani T, Noguchi Y, Zschieschang U ,
CrossRef
Google scholar
|
[80] |
Duraisamy N, Muhammad N M, Kim H C,
CrossRef
Google scholar
|
[81] |
Byun S U, Park H G, Lee K I,
CrossRef
Google scholar
|
[82] |
Park H G, Byun S U, Jeong H C,
|
[83] |
Back S Y, Song C H, Yu S,
CrossRef
Google scholar
|
[84] |
Talapin D V, Steckel J. Quantum dot light-emitting devices. MRS Bulletin, 2013, 38(09): 685–691
CrossRef
Google scholar
|
[85] |
Jang H S, Yang H, Kim S W ,
CrossRef
Google scholar
|
[86] |
Xiang H, Yu S, Che C ,
CrossRef
Google scholar
|
[87] |
Cho K S, Lee E K, Joo W J,
CrossRef
Google scholar
|
[88] |
Bae W K, Brovelli S, Klimov V I . Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bulletin, 2013, 38(9): 721–730
CrossRef
Google scholar
|
[89] |
Supran G J, Shirasaki Y, Song K W ,
CrossRef
Google scholar
|
[90] |
Kim B H, Onses M S, Lim J B,
CrossRef
Google scholar
|
[91] |
Choi K H, Zubair M, Dang H W . Characterization of flexible temperature sensor fabricated through drop-on-demand electrohydrodynamics patterning. Japanese Journal of Applied Physics, 2014, 53(5S3): 05HB02
CrossRef
Google scholar
|
[92] |
Song C H, Back S Y, Yu S I,
CrossRef
Google scholar
|
[93] |
Pikul J H, Graf P, Mishra S ,
CrossRef
Google scholar
|
[94] |
George S, Chaudhery V, Lu M ,
CrossRef
Google scholar
|
[95] |
Kim S, Mariotti C, Alimenti F ,
CrossRef
Google scholar
|
[96] |
Rao K V S , Nikitin P V , Lam S F . Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antennas and Propagation, 2005, 53(12): 3870–3876
CrossRef
Google scholar
|
[97] |
Arrabito G, Pignataro B. Solution processed micro-and nano-bioarrays for multiplexed biosensing. Analytical Chemistry, 2012, 84(13): 5450–5462
CrossRef
Google scholar
|
[98] |
Onses M S, Pathak P, Liu C C ,
CrossRef
Google scholar
|
[99] |
Park J U, Lee J H, Paik U,
CrossRef
Google scholar
|
[100] |
Poellmann M J , Barton K L , Mishra S ,
CrossRef
Google scholar
|
[101] |
Shigeta K, He Y, Sutanto E ,
CrossRef
Google scholar
|
[102] |
Hwang T H, Kim J B, Yang D S,
CrossRef
Google scholar
|
/
〈 | 〉 |