Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane payload capacity

Hua LIU , Xin XIE , Ruoyu TAN , Lianchao ZHANG , Dapeng FAN

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (2) : 265 -278.

PDF (807KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (2) : 265 -278. DOI: 10.1007/s11465-017-0453-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane payload capacity

Author information +
History +
PDF (807KB)

Abstract

Most of the XY positioning stages proposed in previous studies are mainly designed by considering only a single performance indicator of the stage. As a result, the other performance indicators are relatively weak. In this study, a 2-degree-of-freedom linear compliant positioning stage (LCPS) is developed by mechatronic design to balance the interacting performance indicators and realize the desired positioning stage. The key parameters and the coupling of the structure and actuators are completely considered in the design. The LCPS consists of four voice coil motors (VCMs), which are conformally designed for compactness, and six spatial leaf spring parallelograms. These parallelograms are serially connected for a large travel range and a high out-of-plane payload capacity. The mechatronic model is established by matrix structural analysis for structural modeling and by Kirchhoff’s law for the VCMs. The sensitivities of the key parameters are analyzed, and the design parameters are subsequently determined. The analytical model of the stage is confirmed by experiments. The stage has a travel range of 4.4 mm× 7.0 mm and a 0.16% area ratio of workspace to the outer dimension of the stage. The values of these performance indicators are greater than those of any existing stage reported in the literature. The closed-loop bandwidth is 9.5 Hz in both working directions. The stage can track a circular trajectory with a radius of 1.5 mm, with 40 mm error and a resolution of lower than 3 mm. The results of payload tests indicate that the stage has at least 20 kg out-of-plane payload capacity.

Keywords

mechatronic design / linear compliant positioning stage / large travel range / high out-of-plane payload capacity / spatial parallelogram / voice coil motor / sensitivity analysis

Cite this article

Download citation ▾
Hua LIU, Xin XIE, Ruoyu TAN, Lianchao ZHANG, Dapeng FAN. Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane payload capacity. Front. Mech. Eng., 2017, 12(2): 265-278 DOI:10.1007/s11465-017-0453-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aoki KYanagita YKuroda HWide-range fine pointing mechanism for free-space laser communications. Proceedings of SPIE, Free-Space Laser Communication and Active Laser Illumination III20045160: 495–506

[2]

Yong Y KMoheimani S O RKenton B JInvited review article: High-speed flexure-guided nanopositioning mechanical design and control issues. Review of Scientific Instruments201283(12): 121101

[3]

Kenton B JLeang K K. Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Transactions on Mechatronics201217(2): 356–369 

[4]

Chen H T HNg WEngelstad R L. Finite element analysis of a scanning x-ray microscope micropositioning stage. Review of Scientific Instruments199263(1): 591–594 

[5]

Muthuswamy JSalas DOkandan M. A chronic micropositioning system for neurophysiology. In: Proceedings of the Second Joint Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference. Houston: IEEE20023: 2115–2116

[6]

Howell L L. Compliant Mechanisms.New York: John Wiley & Sons, Inc., 2001

[7]

Smith S T. Flexures: Elements of Elastic Mechanisms.Boca Raton: CRC Press, 2000

[8]

Teo T JChen I MYang GA flexure-based electromagnetic linear actuator. Nanotechnology200819(31): 315501

[9]

Zhu XXu XWen ZA novel flexure-based vertical nanopositioning stage with large travel range. Review of Scientific Instruments201586(10): 105112

[10]

Xu Q. Design and development of a compact flexure-based precision positioning system with centimeter range. IEEE Transactions on Industrial Electronics201461(2): 893–903

[11]

Shang JTian YLi ZA novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism. Review of Scientific Instruments201586(9): 095001

[12]

Kang DKim KKim DOptimal design of high precision XY-scanner with nanometer-level resolution and millimeter-level working range. Mechatronics200919(4): 562–570 

[13]

Huh J SKim K HKang D WPerformance evaluation of precision nanopositioning devices caused by uncertainties due to tolerances using function approximation moment method. Review of Scientific Instruments200677(1): 015103

[14]

Gao WDejima SYanai H, A surface motor-driven planar motion stage integrated with an XYqZ surface encoder for precision positioning. Precision Engineering200428(3): 329–337 

[15]

Xiao SLi Y. Optimal design, fabrication, and control of an micropositioning stage driven by electromagnetic actuators. IEEE Transactions on Industrial Electronics201360(10): 4613–4626

[16]

Przemieniecki J S. Theory of Matrix Structural Analysis.New York: McGraw-Hill, 1968

[17]

Furlani E P. Permanent Magnet and Electromechanical Devices.San Diego: Academic Press, 2001

[18]

Kim HKim JAhn DDevelopment of a nanoprecision 3-DOF vertical positioning system with a flexure hinge. IEEE Transactions on Nanotechnology201312(2): 234–245

[19]

Xu Q. New flexure parallel-kinematic micropositioning system with large workspace. IEEE Transactions on Robotics201228(2): 478–491

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (807KB)

4043

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/