Cover illustration
SHL oral liquid, a traditional Chinese patent medicine containing extracts of three herbs, including Lonicera japonica Thunb., Scutellaria baicalensis Georgi, and Forsythia suspense (Thunb.), used in combination with standard care was safe and partially effective for the treatment of COVID-19. The crystal structure reveals the inhibition mechanism of baicalein, a bioactive ingredient of SHL, to the main protease (Mpro) of SARS-CoV-2. (Courtesy of Drs. Yec[Detail] ...
Download coverTumorigenesis involves metabolic reprogramming and abnormal lipid metabolism, which is manifested by increased endogenous fat mobilization, hypertriglyceridemia, and increased fatty acid synthesis. Fatty acid synthase (FASN) is a key enzyme for the de novo synthesis of fatty acids, and monoacylglycerol esterase (MGLL) is an important metabolic enzyme that converts triglycerides into free fatty acids. Both enzymes play an important role in lipid metabolism and are associated with tumor-related signaling pathways, the most common of which is the PI3K–AKT signaling pathway. They can also regulate the immune microenvironment, participate in epithelial–mesenchymal transition, and then regulate tumor invasion and metastasis. Current literature have shown that these two genes are abnormally expressed in many types of tumors and are highly correlated with tumor migration and invasion. This article introduces the structures and functions of FASN and MGLL, their relationship with abnormal lipid metabolism, and the mechanism of the regulation of tumor invasion and metastasis and reviews the research progress of the relationship of FASN and MGLL with tumor invasion and metastasis.
Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.
Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.
Resistome is a cluster of microbial genes encoding proteins with necessary functions to resist the action of antibiotics. Resistome governs essential and separate biological functions to develop resistance against antibiotics. The widespread clinical and nonclinical uses of antibiotics over the years have combined to select antibiotic-resistant determinants and develop resistome in bacteria. At present, the emergence of drug resistance because of resistome is a significant problem faced by clinicians for the treatment of Salmonella infection. Antibiotic resistome is a dynamic and ever-expanding component in Salmonella. The foundation of resistome in Salmonella is laid long before; therefore, the antibiotic resistome of Salmonella is reviewed, discussed, and summarized. We have searched the literature using PubMed, MEDLINE, and Google Scholar with related key terms (resistome, Salmonella, antibiotics, drug resistance) and prepared this review. In this review, we summarize the status of resistance against antibiotics in S. typhi, highlight the seminal work in the resistome of S. typhi and the genes involved in the antibiotic resistance, and discuss the various methods to identify S. typhi resistome for the proactive identification of this infection and quick diagnosis of the disease.
We conducted a randomized, open-label, parallel-controlled, multicenter trial on the use of Shuanghuanglian (SHL), a traditional Chinese patent medicine, in treating cases of COVID-19. A total of 176 patients received SHL by three doses (56 in low dose, 61 in middle dose, and 59 in high dose) in addition to standard care. The control group was composed of 59 patients who received standard therapy alone. Treatment with SHL was not associated with a difference from standard care in the time to disease recovery. Patients with 14-day SHL treatment had significantly higher rate in negative conversion of SARS-CoV-2 in nucleic acid swab tests than the patients from the control group (93.4% vs. 73.9%, P=0.006). Analysis of chest computed tomography images showed that treatment with high-dose SHL significantly promoted absorption of inflammatory focus of pneumonia, which was evaluated by density reduction of inflammatory focus from baseline, at day 7 (mean difference (95% CI), −46.39 (−86.83 to −5.94) HU; P=0.025) and day 14 (mean difference (95% CI), −74.21 (−133.35 to −15.08) HU; P=0.014). No serious adverse events occurred in the SHL groups. This study illustrated that SHL in combination with standard care was safe and partially effective for the treatment of COVID-19.
Severe aplastic anemia II (SAA-II) progresses from non-severe aplastic anemia (NSAA). The unavailability of efficacious treatment has prompted the need for haploidentical bone marrow transplantation (haplo-BMT) in patients lacking a human leukocyte antigen (HLA)-matched donor. This study aimed to investigate the efficacy of haplo-BMT for patients with SAA-II. Twenty-two patients were included and followed up, and FLU/BU/CY/ATG was used as conditioning regimen. Among these patients, 21 were successfully engrafted, 19 of whom survived after haplo-BMT. Four patients experienced grade II–IV aGvHD, including two with grade III–IV aGvHD. Six patients experienced chronic GvHD, among whom four were mild and two were moderate. Twelve patients experienced infections during BMT. One was diagnosed with post-transplant lymphoproliferative disorder and one with probable EBV disease, and both recovered after rituximab infusion. Haplo-BMT achieved 3-year overall survival and disease-free survival rate of 86.4%±0.73% after a median follow-up of 42 months, indicating its effectiveness as a salvage therapy. These promising outcomes may support haplo-BMT as an alternative treatment strategy for patients with SAA-II lacking HLA-matched donors.
Relapse is the main problem after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The outcome of a second allo-HSCT (HSCT2) for relapse post-HSCT has shown promising results in some previous studies. However, little is known about the efficacy of HSCT2 in patients with relapsed/refractory acute leukemia (AL) post-chemotherapy plus modified donor lymphocyte infusion (post-Chemo+m-DLI) after the first allo-HSCT (HSCT1). Therefore, we retrospectively analyzed the efficacy of HSCT2 in 28 patients with relapsed/refractory AL post-Chemo+m-DLI in our center. With a median follow-up of 918 (457–1732) days, 26 patients (92.9%) achieved complete remission, and 2 patients exhibited persistent disease. The probabilities of overall survival (OS) and disease-free survival (DFS) 1 year after HSCT2 were 25.0% and 21.4%, respectively. The cumulative incidences of nonrelapse mortality on day 100 and at 1 year post-HSCT2 were 7.1%±4.9% and 25.0%±8.4%. The cumulative incidences of relapse were 50.0%±9.8% and 53.5%±9.9% at 1 and 2 years post-HSCT2, respectively. Risk stratification prior to HSCT1 and percentage of blasts before HSCT2 were independent risk factors for OS post-HSCT2, and relapse within 6 months post-HSCT1 was an independent risk factor for DFS and relapse post-HSCT2. Our findings suggest that HSCT2 could be a salvage option for patients with relapsed AL post-Chemo+m-DLI.
Stroke is one of the most serious diseases that threaten human life and health. It is a major cause of death and disability in the clinic. New strategies for motor rehabilitation after stroke are undergoing exploration. We aimed to develop a novel artificial neural rehabilitation system, which integrates brain--computer interface (BCI) and functional electrical stimulation (FES) technologies, for limb motor function recovery after stroke. We conducted clinical trials (including controlled trials) in 32 patients with chronic stroke. Patients were randomly divided into the BCI-FES group and the neuromuscular electrical stimulation (NMES) group. The changes in outcome measures during intervention were compared between groups, and the trends of ERD values based on EEG were analyzed for BCI-FES group. Results showed that the increase in Fugl Meyer Assessment of the Upper Extremity (FMA-UE) and Kendall Manual Muscle Testing (Kendall MMT) scores of the BCI-FES group was significantly higher than that in the sham group, which indicated the practicality and superiority of the BCI-FES system in clinical practice. The change in the laterality coefficient (LC) values based on μ-ERD (ΔLCm-ERD) had high significant positive correlation with the change in FMA-UE(r= 0.6093, P=0.012), which provides theoretical basis for exploring novel objective evaluation methods.
Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.
Acupuncture is a promising treatment for relieving pain and improving lower back function in clinical practice. However, evidence from randomized clinical trials (RCTs) remains controversial. Most RCTs conclude that acupuncture procedures for chronic low back pain (CLBP) had no significant difference in efficacy and belonged to placebo. We carefully reviewed and analyzed the methodology and implementation of sham acupuncture in RCTs. Controversial evidence of acupuncture for CLBP is only a microcosm of the evaluation methodological limitation of acupuncture. Inappropriate selection of sham acupuncture controls, rigorous RCT research models, and incorrect interpretation of results may contribute to negative evidence. Evaluating and disregarding the holistic efficacy of acupuncture with an explanatory RCT model based on evaluation drugs may be unwise. Moreover, sham acupuncture is often proven to be non-inert, unreasonable, and with low fidelity. Pitfalls of the explanatory RCT model and sham acupuncture design should be avoided. Establishing a new evaluation system that is in line with the clinical characteristics of acupuncture and obtaining high-quality evidence are difficult but promising tasks.