Primary cilia in hard tissue development and diseases

Sijin Li, Han Zhang, Yao Sun

Front. Med. ›› 2021, Vol. 15 ›› Issue (5) : 657-678.

PDF(5843 KB)
PDF(5843 KB)
Front. Med. ›› 2021, Vol. 15 ›› Issue (5) : 657-678. DOI: 10.1007/s11684-021-0829-6
REVIEW
REVIEW

Primary cilia in hard tissue development and diseases

Author information +
History +

Abstract

Bone and teeth are hard tissues. Hard tissue diseases have a serious effect on human survival and quality of life. Primary cilia are protrusions on the surfaces of cells. As antennas, they are distributed on the membrane surfaces of almost all mammalian cell types and participate in the development of organs and the maintenance of homeostasis. Mutations in cilium-related genes result in a variety of developmental and even lethal diseases. Patients with multiple ciliary gene mutations present overt changes in the skeletal system, suggesting that primary cilia are involved in hard tissue development and reconstruction. Furthermore, primary cilia act as sensors of external stimuli and regulate bone homeostasis. Specifically, substances are trafficked through primary cilia by intraflagellar transport, which affects key signaling pathways during hard tissue development. In this review, we summarize the roles of primary cilia in long bone development and remodeling from two perspectives: primary cilia signaling and sensory mechanisms. In addition, the cilium-related diseases of hard tissue and the manifestations of mutant cilia in the skeleton and teeth are described. We believe that all the findings will help with the intervention and treatment of related hard tissue genetic diseases.

Keywords

primary cilia / bone / mechanical sensing / hard tissue / cilium-related bone disease / tooth

Cite this article

Download citation ▾
Sijin Li, Han Zhang, Yao Sun. Primary cilia in hard tissue development and diseases. Front. Med., 2021, 15(5): 657‒678 https://doi.org/10.1007/s11684-021-0829-6

References

[1]
Berendsen AD, Olsen BR. Bone development. Bone 2015; 80: 14–18
CrossRef Pubmed Google scholar
[2]
Buck DW 2nd, Dumanian GA. Bone biology and physiology: part I. The fundamentals. Plast Reconstr Surg 2012; 129(6): 1314–1320
CrossRef Pubmed Google scholar
[3]
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006; 1092(1): 385–396
CrossRef Pubmed Google scholar
[4]
Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3(Suppl 3): S131–S139
CrossRef Pubmed Google scholar
[5]
Owen M. The origin of bone cells in the postnatal organism. Arthritis Rheum 1980; 23(10): 1073–1080
CrossRef Pubmed Google scholar
[6]
Walmsley GG, Ransom RC, Zielins ER, Leavitt T, Flacco JS, Hu MS, Lee AS, Longaker MT, Wan DC. Stem cells in bone regeneration. Stem Cell Rev Rep 2016; 12(5): 524–529
CrossRef Pubmed Google scholar
[7]
Scherft JP, Daems WT. Single cilia in chondrocytes. J Ultrastruct Res 1967; 19(5): 546–555
[8]
Rich DR, Clark AL. Chondrocyte primary cilia shorten in response to osmotic challenge and are sites for endocytosis. Osteoarthritis Cartilage 2012; 20(8): 923–930
CrossRef Pubmed Google scholar
[9]
Wang S, Wei Q, Dong G, Dong Z. ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury. Biochim Biophys Acta 2013; 1832(10): 1582–1590
CrossRef Pubmed Google scholar
[10]
Tummala P, Arnsdorf EJ, Jacobs CR. The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell Mol Bioeng 2010; 3(3): 207–212
CrossRef Pubmed Google scholar
[11]
Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 2006; 281(41): 30884–30895
CrossRef Pubmed Google scholar
[12]
Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 2007; 104(33): 13325–13330
CrossRef Pubmed Google scholar
[13]
Federman M, Nichols G Jr. Bone cell cilia: vestigial or functional organelles? Calcif Tissue Res 1974; 17(1): 81–85
CrossRef Pubmed Google scholar
[14]
Yuan X, Serra RA, Yang S. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Ann N Y Acad Sci 2015; 1335(1): 78–99
CrossRef Pubmed Google scholar
[15]
Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol 2007; 23(1): 345–373
CrossRef Pubmed Google scholar
[16]
Fry AM, Leaper MJ, Bayliss R. The primary cilium: guardian of organ development and homeostasis. Organogenesis 2014; 10(1): 62–68
CrossRef Pubmed Google scholar
[17]
Sorokin SP. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 1968; 3(2): 207–230
Pubmed
[18]
Berbari NF, O’Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol 2009; 19(13): R526–R535
CrossRef Pubmed Google scholar
[19]
Izawa I, Goto H, Kasahara K, Inagaki M. Current topics of functional links between primary cilia and cell cycle. Cilia 2015; 4(1): 12
CrossRef Pubmed Google scholar
[20]
Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium. Front Cell Dev Biol 2018; 6: 8
CrossRef Pubmed Google scholar
[21]
Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007; 69(1): 377–400
CrossRef Pubmed Google scholar
[22]
Youn YH, Han YG. Primary cilia in brain development and diseases. Am J Pathol 2018; 188(1): 11–22
CrossRef Pubmed Google scholar
[23]
Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13(1): 83–117
CrossRef Pubmed Google scholar
[24]
Yoon SY, Choi JE, Choi JM, Kim DH. Dynein cleavage and microtubule accumulation in okadaic acid-treated neurons. Neurosci Lett 2008; 437(2): 111–115
CrossRef Pubmed Google scholar
[25]
Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L. Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 2011; 13(4): 351–360
CrossRef Pubmed Google scholar
[26]
Cao M, Zhong Q. Cilia in autophagy and cancer. Cilia 2016; 5(1): 4
CrossRef Pubmed Google scholar
[27]
Hu Q, Nelson WJ. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68(6): 313–324
CrossRef Pubmed Google scholar
[28]
Christopher KJ, Wang B, Kong Y, Weatherbee SD. Forward genetics uncovers transmembrane protein 107 as a novel factor required for ciliogenesis and Sonic hedgehog signaling. Dev Biol 2012; 368(2): 382–392
CrossRef Pubmed Google scholar
[29]
Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci 2010; 123(4): 499–503
CrossRef Pubmed Google scholar
[30]
Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002; 3(11): 813–825
CrossRef Pubmed Google scholar
[31]
Yang S, Wang C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012; 51(3): 407–417
CrossRef Pubmed Google scholar
[32]
Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 2009; 111(3): 39–53
CrossRef Pubmed Google scholar
[33]
Yuan X, Yang S. Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res 2016; 95(12): 1341–1349
CrossRef Pubmed Google scholar
[34]
Goetz SC, Ocbina PJ, Anderson KV. The primary cilium as a Hedgehog signal transduction machine. Methods Cell Biol 2009; 94: 199–222
CrossRef Pubmed Google scholar
[35]
Cai S, Bodle JC, Mathieu PS, Amos A, Hamouda M, Bernacki S, McCarty G, Loboa EG. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. FASEB J 2017; 31(1): 346–355
CrossRef Pubmed Google scholar
[36]
McMurray RJ, Wann AK, Thompson CL, Connelly JT, Knight MM. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 2013; 3(1): 3545
CrossRef Pubmed Google scholar
[37]
Yuan X, Cao J, He X, Serra R, Qu J, Cao X, Yang S. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun 2016; 7(1): 11024
CrossRef Pubmed Google scholar
[38]
Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet 2012; 160C(3): 165–174
CrossRef Pubmed Google scholar
[39]
Day TF, Yang Y. Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 2008; 90(Suppl 1): 19–24
CrossRef Pubmed Google scholar
[40]
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007; 317(5836): 372–376
CrossRef Pubmed Google scholar
[41]
Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK. Intraflagellar transport is essential for endochondral bone formation. Development 2007; 134(2): 307–316
CrossRef Pubmed Google scholar
[42]
Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the β-catenin-independent pathway of Wnt signaling. Cancer Sci 2008; 99(2): 202–208
CrossRef Pubmed Google scholar
[43]
Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19(2): 179–192
CrossRef Pubmed Google scholar
[44]
Lancaster MA, Schroth J, Gleeson JG. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 2011; 13(6): 700–707
CrossRef Pubmed Google scholar
[45]
Corrigan MA, Ferradaes TM, Riffault M, Hoey DA. Ciliotherapy treatments to enhance biochemically- and biophysically-induced mesenchymal stem cell osteogenesis: a comparison study. Cell Mol Bioeng 2018; 12(1): 53–67
CrossRef Pubmed Google scholar
[46]
Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 2008; 10(1): 70–76
CrossRef Pubmed Google scholar
[47]
Lienkamp S, Ganner A, Walz G. Inversin, Wnt signaling and primary cilia. Differentiation 2012; 83(2): S49–S55
CrossRef Pubmed Google scholar
[48]
Pitaval A, Tseng Q, Bornens M, Théry M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol 2010; 191(2): 303–312
CrossRef Pubmed Google scholar
[49]
Li A, Xia X, Yeh J, Kua H, Liu H, Mishina Y, Hao A, Li B. PDGF-AA promotes osteogenic differentiation and migration of mesenchymal stem cell by down-regulating PDGFRα and derepressing BMP-Smad1/5/8 signaling. PLoS One 2014; 9(12): e113785
CrossRef Pubmed Google scholar
[50]
Schmid FM, Schou KB, Vilhelm MJ, Holm MS, Breslin L, Farinelli P, Larsen LA, Andersen JS, Pedersen LB, Christensen ST. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J Cell Biol 2018; 217(1): 151–161
CrossRef Pubmed Google scholar
[51]
Graham S, Leonidou A, Lester M, Heliotis M, Mantalaris A, Tsiridis E. Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing. Expert Opin Investig Drugs 2009; 18(11): 1633–1654
CrossRef Pubmed Google scholar
[52]
Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 2016; 113(19): E2589–E2597
CrossRef Pubmed Google scholar
[53]
Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr Biol 2005; 15(20): 1861–1866
CrossRef Pubmed Google scholar
[54]
Umberger NL, Caspary T, Bettencourt-Dias M. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell 2015; 26(2): 350–358
CrossRef Pubmed Google scholar
[55]
Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor β family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm 2015; 2015: 137823
CrossRef Pubmed Google scholar
[56]
Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 2019; 15(4): 199–219
CrossRef Pubmed Google scholar
[57]
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36(2): 533–545
Pubmed
[58]
Liu M, Alharbi M, Graves D, Yang S. IFT80 is required for fracture healing through controlling the regulation of TGF-β signaling in chondrocyte differentiation and function. J Bone Miner Res 2020; 35(3): 571–582
CrossRef Pubmed Google scholar
[59]
Aspera-Werz RH, Chen T, Ehnert S, Zhu S, Fröhlich T, Nussler AK. Cigarette smoke induces the risk of metabolic bone diseases: transforming growth factor β signaling impairment via dysfunctional primary cilia affects migration, proliferation, and differentiation of human mesenchymal stem cells. Int J Mol Sci 2019; 20(12): 2915
CrossRef Pubmed Google scholar
[60]
Xie YF, Shi WG, Zhou J, Gao YH, Li SF, Fang QQ, Wang MG, Ma HP, Wang JF, Xian CJ, Chen KM. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 2016; 93: 22–32
CrossRef Pubmed Google scholar
[61]
Labour MN, Riffault M, Christensen ST, Hoey DA. TGFβ1-induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci Rep 2016; 6(1): 35542
CrossRef Pubmed Google scholar
[62]
Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc Microanal 2012; 18(6): 1430–1441
CrossRef Pubmed Google scholar
[63]
Sharma D, Ciani C, Marin PA, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 2012; 51(3): 488–497
CrossRef Pubmed Google scholar
[64]
Main RP. Osteocytes and the bone lacunar-canalicular system: insights into bone biology and skeletal function using bone tissue microstructure. Int J Paleopathol 2017; 18: 44–46
CrossRef Pubmed Google scholar
[65]
Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng 2008; 36(12): 1978–1991
CrossRef Pubmed Google scholar
[66]
Whitfield JF. Primary cilium—is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem 2003; 89(2): 233–237
CrossRef Pubmed Google scholar
[67]
Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 2003; 88(1): 104–112
CrossRef Pubmed Google scholar
[68]
Bonewald LF. Mechanosensation and transduction in osteocytes. Bonekey Osteovision 2006; 3(10): 7–15
CrossRef Pubmed Google scholar
[69]
Stavenschi E, Labour MN, Hoey DA. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: the effect of shear stress magnitude, frequency, and duration. J Biomech 2017; 55: 99–106
CrossRef Pubmed Google scholar
[70]
Riddle RC, Taylor AF, Genetos DC, Donahue HJ. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 2006; 290(3): C776–C784
CrossRef Pubmed Google scholar
[71]
Metzger TA, Kreipke TC, Vaughan TJ, McNamara LM, Niebur GL. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng 2015; 137(1): 011006
CrossRef Pubmed Google scholar
[72]
Hu K, Sun H, Gui B, Sui C. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed Pharmacother 2017; 91: 841–848
CrossRef Pubmed Google scholar
[73]
Yourek G, McCormick SM, Mao JJ, Reilly GC. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med 2010; 5(5): 713–724
CrossRef Pubmed Google scholar
[74]
Sonam S, Sathe SR, Yim EK, Sheetz MP, Lim CT. Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Sci Rep 2016; 6(1): 20415
CrossRef Pubmed Google scholar
[75]
Shi W, Zhang Y, Chen K, He J, Feng X, Wei W, Hua J, Wang J. Primary cilia act as microgravity sensors by depolymerizing microtubules to inhibit osteoblastic differentiation and mineralization. Bone 2020; 136: 115346
CrossRef Pubmed Google scholar
[76]
Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 2001; 184(1): 71–79
CrossRef Pubmed Google scholar
[77]
Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte mechanobiology. Curr Osteoporos Rep 2017; 15(4): 318–325
CrossRef Pubmed Google scholar
[78]
Chen JC, Hoey DA, Chua M, Bellon R, Jacobs CR. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 2016; 30(4): 1504–1511
CrossRef Pubmed Google scholar
[79]
Moore ER, Zhu YX, Ryu HS, Jacobs CR. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res Ther 2018; 9(1): 190
CrossRef Pubmed Google scholar
[80]
Kitase Y, Barragan L, Qing H, Kondoh S, Jiang JX, Johnson ML, Bonewald LF. Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the β-catenin and PKA pathways. J Bone Miner Res 2010; 25(12): 2657–2668
CrossRef Pubmed Google scholar
[81]
Delaine-Smith RM, Sittichokechaiwut A, Reilly GC. Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J 2014; 28(1): 430–439
CrossRef Pubmed Google scholar
[82]
Kaku M, Komatsu Y. Functional diversity of ciliary proteins in bone development and disease. Curr Osteoporos Rep 2017; 15(2): 96–102
CrossRef Pubmed Google scholar
[83]
Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003; 285(5): F998–F1012
CrossRef Pubmed Google scholar
[84]
McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA. Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 2010; 34(5): 441–446
CrossRef Pubmed Google scholar
[85]
Gardner K, Arnoczky SP, Lavagnino M. Effect of in vitro stress-deprivation and cyclic loading on the length of tendon cell cilia in situ. J Orthop Res 2011; 29(4): 582–587
CrossRef Pubmed Google scholar
[86]
Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A 2003; 100(9): 5286–5291
CrossRef Pubmed Google scholar
[87]
Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, Quarles LD. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 2012; 125(8): 1945–1957
CrossRef Pubmed Google scholar
[88]
Kolpakova-Hart E, Jinnin M, Hou B, Fukai N, Olsen BR. Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev Biol 2007; 309(2): 273–284
CrossRef Pubmed Google scholar
[89]
Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 2012; 7(3): e33368
CrossRef Pubmed Google scholar
[90]
Leucht P, Monica SD, Temiyasathit S, Lenton K, Manu A, Longaker MT, Jacobs CR, Spilker RL, Guo H, Brunski JB, Helms JA. Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys 2013; 35(3): 392–402
CrossRef Pubmed Google scholar
[91]
Li H. TRP channel classification. Adv Exp Med Biol 2017; 976: 1–8
CrossRef Pubmed Google scholar
[92]
Siroky BJ, Kleene NK, Kleene SJ, Varnell CD Jr, Comer RG, Liu J, Lu L, Pachciarz NW, Bissler JJ, Dixon BP. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3. Am J Physiol Renal Physiol 2017; 312(4): F791–F805
CrossRef Pubmed Google scholar
[93]
Corrigan MA, Johnson GP, Stavenschi E, Riffault M, Labour MN, Hoey DA. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. Sci Rep 2018; 8(1): 3824
CrossRef Pubmed Google scholar
[94]
Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 2008; 216(1): 47–53
CrossRef Pubmed Google scholar
[95]
Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 2008; 8(3): 257–265
CrossRef Pubmed Google scholar
[96]
Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 2006; 10(6): 771–782
CrossRef Pubmed Google scholar
[97]
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6): 889–901
CrossRef Pubmed Google scholar
[98]
O’Conor CJ, Griffin TM, Liedtke W, Guilak F. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 2013; 72(2): 300–304
CrossRef Pubmed Google scholar
[99]
Masuyama R, Mizuno A, Komori H, Kajiya H, Uekawa A, Kitaura H, Okabe K, Ohyama K, Komori T. Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 2012; 27(8): 1708–1721
CrossRef Pubmed Google scholar
[100]
Lee KL, Guevarra MD, Nguyen AM, Chua MC, Wang Y, Jacobs CR. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 2015; 4(1): 7
CrossRef Pubmed Google scholar
[101]
Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 2009; 60(10): 3028–3037
CrossRef Pubmed Google scholar
[102]
Han SJ, Kim JI, Park KM. P26 Hydrogen sulfide elongates primary cilia in the kidney tubular epithelial cells. Nitric Oxide 2014; 39(Supplement): S24
CrossRef Google scholar
[103]
Miyoshi K, Kasahara K, Miyazaki I, Asanuma M. Factors that influence primary cilium length. Acta Med Okayama 2011; 65(5): 279–285
Pubmed
[104]
Xiao ZS, Quarles LD. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann N Y Acad Sci 2010; 1192(1): 410–421
CrossRef Pubmed Google scholar
[105]
Li Q, Montalbetti N, Wu Y, Ramos A, Raychowdhury MK, Chen XZ, Cantiello HF. Polycystin-2 cation channel function is under the control of microtubular structures in primary cilia of renal epithelial cells. J Biol Chem 2006; 281(49): 37566–37575
CrossRef Pubmed Google scholar
[106]
Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33(2): 129–137
CrossRef Pubmed Google scholar
[107]
Spasic M, Jacobs CR. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol 2017; 71: 42–52
CrossRef Pubmed Google scholar
[108]
Qiu N, Cao L, David V, Quarles LD, Xiao Z. Kif3a deficiency reverses the skeletal abnormalities in Pkd1 deficient mice by restoring the balance between osteogenesis and adipogenesis. PLoS One 2010; 5(12): e15240
CrossRef Pubmed Google scholar
[109]
Jin X, Mohieldin AM, Muntean BS, Green JA, Shah JV, Mykytyn K, Nauli SM. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell Mol Life Sci 2014; 71(11): 2165–2178
CrossRef Pubmed Google scholar
[110]
Saunders MM, You J, Zhou Z, Li Z, Yellowley CE, Kunze EL, Jacobs CR, Donahue HJ. Fluid flow-induced prostaglandin E2 response of osteoblastic ROS 17/2.8 cells is gap junction-mediated and independent of cytosolic calcium. Bone 2003; 32(4): 350–356
CrossRef Pubmed Google scholar
[111]
Jing D, Shen G, Huang J, Xie K, Cai J, Xu Q, Wu X, Luo E. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats. Bone 2010; 46(2): 487–495
CrossRef Pubmed Google scholar
[112]
Garland DE, Adkins RH, Matsuno NN, Stewart CA. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J Spinal Cord Med 1999; 22(4): 239–245
CrossRef Pubmed Google scholar
[113]
Tabrah FL, Ross P, Hoffmeier M, Gilbert F Jr. Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 1998; 19(2): 75–78
CrossRef Pubmed Google scholar
[114]
Funk RH, Monsees T, Ozkucur N. Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 2009; 43(4): 177–264
CrossRef Pubmed Google scholar
[115]
Yan JL, Zhou J, Ma HP, Ma XN, Gao YH, Shi WG, Fang QQ, Ren Q, Xian CJ, Chen KM. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 2015; 404: 132–140
CrossRef Pubmed Google scholar
[116]
Wang YY, Pu XY, Shi WG, Fang QQ, Chen XR, Xi HR, Gao YH, Zhou J, Xian CJ, Chen KM. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway. J Cell Physiol 2019; 234(3): 2807–2821
CrossRef Pubmed Google scholar
[117]
Shi W, Gao Y, Wang Y, Zhou J, Wei Z, Ma X, Ma H, Xian CJ, Wang J, Chen K. The flavonol glycoside icariin promotes bone formation in growing rats by activating the cAMP signaling pathway in primary cilia of osteoblasts. J Biol Chem 2017; 292(51): 20883–20896
CrossRef Pubmed Google scholar
[118]
Zhou J, Gao YH, Zhu BY, Shao JL, Ma HP, Xian CJ, Chen KM. Sinusoidal electromagnetic fields increase peak bone mass in rats by activating Wnt10b/-catenin in primary cilia of osteoblasts. J Bone Miner Res 2019; 34(7): 1336–1351
[119]
McCullen SD, McQuilling JP, Grossfeld RM, Lubischer JL, Clarke LI, Loboa EG. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells. Tissue Eng Part C Methods 2010; 16(6): 1377–1386
CrossRef Pubmed Google scholar
[120]
Sun S, Liu Y, Lipsky S, Cho M. Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 2007; 21(7): 1472–1480
CrossRef Pubmed Google scholar
[121]
Khatib L, Golan DE, Cho M. Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J 2004; 18(15): 1903–1905
CrossRef Pubmed Google scholar
[122]
Zhang J, Li M, Kang ET, Neoh KG. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomater 2016; 32: 46–56
CrossRef Pubmed Google scholar
[123]
Xu J, Wang W, Clark CC, Brighton CT. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthritis Cartilage 2009; 17(3): 397–405
CrossRef Pubmed Google scholar
[124]
Bergh JJ, Xu Y, Farach-Carson MC. Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology 2004; 145(1): 426–436
CrossRef Pubmed Google scholar
[125]
Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 2017; 18(9): 533–547
CrossRef Pubmed Google scholar
[126]
Novarino G, Akizu N, Gleeson JG. Modeling human disease in humans: the ciliopathies. Cell 2011; 147(1): 70–79
CrossRef Pubmed Google scholar
[127]
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10(1): 69–85
CrossRef Pubmed Google scholar
[128]
Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011; 26(7): 1039–1056
CrossRef Pubmed Google scholar
[129]
Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM. Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 2012; 90(5): 864–870
CrossRef Pubmed Google scholar
[130]
Rix S, Calmont A, Scambler PJ, Beales PL. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet 2011; 20(7): 1306–1314
CrossRef Pubmed Google scholar
[131]
Dagoneau N, Goulet M, Geneviève D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, Cavalcanti D, Delezoide AL, Serre V, Le Merrer M, Munnich A, Cormier-Daire V. DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet 2009; 84(5): 706–711
CrossRef Pubmed Google scholar
[132]
Saldino RM, Noonan CD. Severe thoracic dystrophy with striking micromelia, abnormal osseous development, including the spine, and multiple visceral anomalies. Am J Roentgenol Radium Ther Nucl Med 1972; 114(2): 257–263
CrossRef Pubmed Google scholar
[133]
Yang SS, Roth JA, Langer LO Jr. Short rib syndrome Beemer-Langer type with polydactyly: a multiple congenital anomalies syndrome. Am J Med Genet 1991; 39(3): 243–246
CrossRef Pubmed Google scholar
[134]
Elçioglu NH, Hall CM. Diagnostic dilemmas in the short rib-polydactyly syndrome group. Am J Med Genet 2002; 111(4): 392–400
CrossRef Pubmed Google scholar
[135]
Majewski F, Pfeiffer RA, Lenz W, Müller R, Feil G, Seiler R. Polysyndactyly, short limbs, and genital malformations—a new syndrome? Z Kinderheilkd 1971; 111(2): 118–138 (in German)
CrossRef Pubmed Google scholar
[136]
Naumoff P, Young LW, Mazer J, Amortegui AJ. Short rib-polydactyly syndrome type 3. Radiology 1977; 122(2): 443–447
CrossRef Pubmed Google scholar
[137]
Meizner I, Barnhard Y. Short-rib polydactyly syndrome (SRPS) type III diagnosed during routine prenatal ultrasonographic screening. A case report. Prenat Diagn 1995; 15(7): 665–668
CrossRef Pubmed Google scholar
[138]
Cideciyan D, Rodriguez MM, Haun RL, Abdenour GE, Bruce JH. New findings in short rib syndrome. Am J Med Genet 1993; 46(3): 255–259
CrossRef Pubmed Google scholar
[139]
Schmidts M, Arts HH, Bongers EMHF, Yap Z, Oud MM, Antony D, Duijkers L, Emes RD, Stalker J, Yntema JBL, Plagnol V, Hoischen A, Gilissen C, Forsythe E, Lausch E, Veltman JA, Roeleveld N, Superti-Furga A, Kutkowska-Kazmierczak A, Kamsteeg EJ, Elçioğlu N, van Maarle MC, Graul-Neumann LM, Devriendt K, Smithson SF, Wellesley D, Verbeek NE, Hennekam RCM, Kayserili H, Scambler PJ, Beales PL; UK10K, Knoers NV, Roepman R, Mitchison HM. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet 2013; 50(5): 309–323
CrossRef Pubmed Google scholar
[140]
Baujat G, Huber C, El Hokayem J, Caumes R, Do Ngoc Thanh C, David A, Delezoide AL, Dieux-Coeslier A, Estournet B, Francannet C, Kayirangwa H, Lacaille F, Le Bourgeois M, Martinovic J, Salomon R, Sigaudy S, Malan V, Munnich A, Le Merrer M, Le Quan Sang KH, Cormier-Daire V. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet 2013; 50(2): 91–98
CrossRef Pubmed Google scholar
[141]
Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanović R, Peco-Antić A, Mache C, Hurles ME, Joksić I, Guć-Šćekić M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C. Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum Mutat 2013; 34(5): 714–724
CrossRef Pubmed Google scholar
[142]
Tüysüz B, Bariş S, Aksoy F, Madazli R, Ungür S, Sever L. Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A 2009; 149A(8): 1727–1733
CrossRef Pubmed Google scholar
[143]
Jonassen JA, SanAgustin J, Baker SP, Pazour GJ. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J Am Soc Nephrol 2012; 23(4): 641–651
CrossRef Pubmed Google scholar
[144]
Schmidts M, Vodopiutz J, Christou-Savina S, Cortés CR, McInerney-Leo AM, Emes RD, Arts HH, Tüysüz B, D’Silva J, Leo PJ, Giles TC, Oud MM, Harris JA, Koopmans M, Marshall M, Elçioglu N, Kuechler A, Bockenhauer D, Moore AT, Wilson LC, Janecke AR, Hurles ME, Emmet W, Gardiner B, Streubel B, Dopita B, Zankl A, Kayserili H, Scambler PJ, Brown MA, Beales PL, Wicking C; UK10K, Duncan EL, Mitchison HM. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2013; 93(5): 932–944
CrossRef Pubmed Google scholar
[145]
Oberklaid F, Danks DM, Mayne V, Campbell P. Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch Dis Child 1977; 52(10): 758–765
CrossRef Pubmed Google scholar
[146]
Beals RK, Weleber RG. Conorenal dysplasia: a syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur. Am J Med Genet A 2007; 143A(20): 2444–2447
CrossRef Pubmed Google scholar
[147]
Eke T, Woodruff G, Young ID. A new oculorenal syndrome: retinal dystrophy and tubulointerstitial nephropathy in cranioectodermal dysplasia. Br J Ophthalmol 1996; 80(5): 490–491
CrossRef Pubmed Google scholar
[148]
Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, Szczepanska M, Krawczynski M, Zachwieja J, Zwolinska D, Beales PL, Ropers HH, Latos-Bielenska A, Kuss AW. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 2010; 86(6): 949–956
CrossRef Pubmed Google scholar
[149]
Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbø M, Filhol E, Bole-Feysot C, Nitschké P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rødahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 2011; 89(5): 634–643
CrossRef Pubmed Google scholar
[150]
Lee E, Sivan-Loukianova E, Eberl DF, Kernan MJ. An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 2008; 18(24): 1899–1906
CrossRef Pubmed Google scholar
[151]
Merrill AE, Merriman B, Farrington-Rock C, Camacho N, Sebald ET, Funari VA, Schibler MJ, Firestein MH, Cohn ZA, Priore MA, Thompson AK, Rimoin DL, Nelson SF, Cohn DH, Krakow D. Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet 2009; 84(4): 542–549
CrossRef Pubmed Google scholar
[152]
Porter ME, Bower R, Knott JA, Byrd P, Dentler W. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 1999; 10(3): 693–712
CrossRef Pubmed Google scholar
[153]
Miller KA, Ah-Cann CJ, Welfare MF, Tan TY, Pope K, Caruana G, Freckmann ML, Savarirayan R, Bertram JF, Dobbie MS, Bateman JF, Farlie PG. Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome. PLoS Genet 2013; 9(8): e1003746
CrossRef Pubmed Google scholar
[154]
Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 2007; 39(6): 727–729
CrossRef Pubmed Google scholar
[155]
Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG; NISC Comparative Sequencing Program, Gyapay G, Rieger S, Tönshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, Gallagher TE, Lewis RA, Bergmann C, Otto EA, Saunier S, Scambler PJ, Beales PL, Gleeson JG, Maher ER, Attié-Bitach T, Dollfus H, Johnson CA, Green ED, Gibbs RA, Hildebrandt F, Pierce EA, Katsanis N, Katsanis N. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 2011; 43(3): 189–196
CrossRef Pubmed Google scholar
[156]
Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschké P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabó AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux MR, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV; UK10K Consortium,Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 2013; 93(5): 915–925
CrossRef Pubmed Google scholar
[157]
Tao D, Xue H, Zhang C, Li G, Sun Y. The role of IFT140 in osteogenesis of adult mice long bone. J Histochem Cytochem 2019; 67(8): 601–611
CrossRef Pubmed Google scholar
[158]
Gao D, Wang R, Li B, Yang Y, Zhai Z, Chen DY. WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-κB activation pathway. Cell Mol Life Sci 2009; 66(15): 2573–2584
CrossRef Pubmed Google scholar
[159]
Krock BL, Mills-Henry I, Perkins BD. Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 2009; 50(11): 5463–5471
CrossRef Pubmed Google scholar
[160]
Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, Blanco MJ, Wilson A, Liu YN, Miles C, Peters H, Goodship JA. Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development 2007; 134(16): 2903–2912
CrossRef Pubmed Google scholar
[161]
Caparrós-Martín JA, Valencia M, Reytor E, Pacheco M, Fernandez M, Perez-Aytes A, Gean E, Lapunzina P, Peters H, Goodship JA, Ruiz-Perez VL. The ciliary Evc/Evc2 complex interacts with Smo and controls Hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum Mol Genet 2013; 22(1): 124–139
CrossRef Pubmed Google scholar
[162]
Martik ML, Bronner ME. Regulatory logic underlying diversification of the neural crest. Trends Genet 2017; 33(10): 715–727
CrossRef Pubmed Google scholar
[163]
Cortés CR, Metzis V, Wicking C. Unmasking the ciliopathies: craniofacial defects and the primary cilium. Wiley Interdiscip Rev Dev Biol 2015; 4(6): 637–653
CrossRef Pubmed Google scholar
[164]
Wang SF, Kowal TJ, Ning K, Koo EB, Wu AY, Mahajan VB, Sun Y. Review of ocular manifestations of Joubert syndrome. Genes (Basel) 2018; 9(12): 605
CrossRef Pubmed Google scholar
[165]
Molinari E, Ramsbottom SA, Srivastava S, Booth P, Alkanderi S, McLafferty SM, Devlin LA, White K, Gunay-Aygun M, Miles CG, Sayer JA. Targeted exon skipping rescues ciliary protein composition defects in Joubert syndrome patient fibroblasts. Sci Rep 2019; 9(1): 10828
CrossRef Pubmed Google scholar
[166]
Del Giudice E, Macca M, Imperati F, D’Amico A, Parent P, Pasquier L, Layet V, Lyonnet S, Stamboul-Darmency V, Thauvin-Robinet C, Franco B; Oral-Facial-Digital Type I (OFD1) Collaborative Group. CNS involvement in OFD1 syndrome: a clinical, molecular, and neuroimaging study. Orphanet J Rare Dis 2014; 9(1): 74
CrossRef Pubmed Google scholar
[167]
Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell 2010; 18(3): 410–424
CrossRef Pubmed Google scholar
[168]
Ferrante MI, Giorgio G, Feather SA, Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F, Woolf AS, Sylvie O, Bernard L, Malcolm S, Winter R, Ballabio A, Franco B. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 2001; 68(3): 569–576
CrossRef Pubmed Google scholar
[169]
AlKattan WM, Al-Qattan MM, Bafaqeeh SA. The pathogenesis of the clinical features of oral-facial-digital syndrome type I. Saudi Med J 2015; 36(11): 1277–1284
CrossRef Pubmed Google scholar
[170]
Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, Dollé P, Franco B. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006; 38(1): 112–117
CrossRef Pubmed Google scholar
[171]
Romani M, Mancini F, Micalizzi A, Poretti A, Miccinilli E, Accorsi P, Avola E, Bertini E, Borgatti R, Romaniello R, Ceylaner S, Coppola G, D’Arrigo S, Giordano L, Janecke AR, Lituania M, Ludwig K, Martorell L, Mazza T, Odent S, Pinelli L, Poo P, Santucci M, Signorini S, Simonati A, Spiegel R, Stanzial F, Steinlin M, Tabarki B, Wolf NI, Zibordi F, Boltshauser E, Valente EM. Oral-facial-digital syndrome type VI: is C5orf42 really the major gene? Hum Genet 2015; 134(1): 123–126
CrossRef Pubmed Google scholar
[172]
Poretti A, Vitiello G, Hennekam RC, Arrigoni F, Bertini E, Borgatti R, Brancati F, D’Arrigo S, Faravelli F, Giordano L, Huisman TA, Iannicelli M, Kluger G, Kyllerman M, Landgren M, Lees MM, Pinelli L, Romaniello R, Scheer I, Schwarz CE, Spiegel R, Tibussek D, Valente EM, Boltshauser E. Delineation and diagnostic criteria of oral-facial-digital syndrome type VI. Orphanet J Rare Dis 2012; 7(1): 4
CrossRef Pubmed Google scholar
[173]
Asadollahi R, Strauss JE, Zenker M, Beuing O, Edvardson S, Elpeleg O, Strom TM, Joset P, Niedrist D, Otte C, Oneda B, Boonsawat P, Azzarello-Burri S, Bartholdi D, Papik M, Zweier M, Haas C, Ekici AB, Baumer A, Boltshauser E, Steindl K, Nothnagel M, Schinzel A, Stoeckli ET, Rauch A. Clinical and experimental evidence suggest a link between KIF7 and C5orf42-related ciliopathies through Sonic Hedgehog signaling. Eur J Hum Genet 2018; 26(2): 197–209
CrossRef Pubmed Google scholar
[174]
Tobin JL, Di Franco M, Eichers E, May-Simera H, Garcia M, Yan J, Quinlan R, Justice MJ, Hennekam RC, Briscoe J, Tada M, Mayor R, Burns AJ, Lupski JR, Hammond P, Beales PL. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet–Biedl syndrome. Proc Natl Acad Sci U S A 2008; 105(18): 6714–6719
CrossRef Pubmed Google scholar
[175]
Borgström MK, Riise R, Tornqvist K, Granath L. Anomalies in the permanent dentition and other oral findings in 29 individuals with Laurence–Moon–Bardet–Biedl syndrome. J Oral Pathol Med 1996; 25(2): 86–89
CrossRef Pubmed Google scholar
[176]
Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet 1999; 36(6): 437–446
Pubmed
[177]
Andersson EM, Axelsson S, Gjølstad LF, Storhaug K. Taurodontism: a minor diagnostic criterion in Laurence–Moon/Bardet–Biedl syndromes. Acta Odontol Scand 2013; 71(6): 1671–1674
CrossRef Pubmed Google scholar
[178]
Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, Nuangchamnong N, Scott CA, Slusarski DC, Sheffield VC. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 2016; 25(11): 2283–2294
CrossRef Pubmed Google scholar
[179]
Ludlam WG, Aoba T, Cuéllar J, Bueno-Carrasco MT, Makaju A, Moody JD, Franklin S, Valpuesta JM, Willardson BM. Molecular architecture of the Bardet-Biedl syndrome protein 2-7-9 subcomplex. J Biol Chem 2019; 294(44): 16385–16399
CrossRef Pubmed Google scholar
[180]
Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, Sheffield VC, Slusarski DC. Genetic interaction between Bardet–Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 2008; 17(13): 1956–1967
CrossRef Pubmed Google scholar
[181]
Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum Mol Genet 2012; 21(9): 1945–1953
CrossRef Pubmed Google scholar
[182]
Valencia M, Lapunzina P, Lim D, Zannolli R, Bartholdi D, Wollnik B, Al-Ajlouni O, Eid SS, Cox H, Buoni S, Hayek J, Martinez-Frias ML, Antonio PA, Temtamy S, Aglan M, Goodship JA, Ruiz-Perez VL. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling. Hum Mutat 2009; 30(12): 1667–1675
CrossRef Pubmed Google scholar
[183]
Shen W, Han D, Zhang J, Zhao H, Feng H. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family. Am J Med Genet Part A 2011; 155 (9): 2131–2136
CrossRef Pubmed Google scholar
[184]
Ruiz-Perez VL, Ide SE, Strom TM, Lorenz B, Wilson D, Woods K, King L, Francomano C, Freisinger P, Spranger S, Marino B, Dallapiccola B, Wright M, Meitinger T, Polymeropoulos MH, Goodship J. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet 2000; 24(3): 283–286
CrossRef Pubmed Google scholar
[185]
Baujat G, Le Merrer M. Ellis-van Creveld syndrome. Orphanet J Rare Dis 2007; 2(1): 27
CrossRef Pubmed Google scholar
[186]
Hampl M, Cela P, Szabo-Rogers HL, Kunova Bosakova M, Dosedelova H, Krejci P, Buchtova M. Role of primary cilia in odontogenesis. J Dent Res 2017; 96(9): 965–974
CrossRef Pubmed Google scholar
[187]
Nakatomi M, Hovorakova M, Gritli-Linde A, Blair HJ, MacArthur K, Peterka M, Lesot H, Peterkova R, Ruiz-Perez VL, Goodship JA, Peters H. Evc regulates a symmetrical response to Shh signaling in molar development. J Dent Res 2013; 92(3): 222–228
CrossRef Pubmed Google scholar
[188]
Curry CJ, Hall BD. Polydactyly, conical teeth, nail dysplasia, and short limbs: a new autosomal dominant malformation syndrome. Birth Defects Orig Artic Ser 1979; 15(5B): 253–263
Pubmed
[189]
Roubicek M, Spranger J. Weyers acrodental dysostosis in a family. Clin Genet 1984; 26(6): 587–590
CrossRef Pubmed Google scholar
[190]
Ye X, Song G, Fan M, Shi L, Jabs EW, Huang S, Guo R, Bian Z. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis. Hum Genet 2006; 119(1-2): 199–205
CrossRef Pubmed Google scholar
[191]
Veis A. Mineral-matrix interactions in bone and dentin. J Bone Miner Res 1993; 8(Suppl 2): S493–S497
CrossRef Pubmed Google scholar
[192]
Hisamoto M, Goto M, Muto M, Nio-Kobayashi J, Iwanaga T, Yokoyama A. Developmental changes in primary cilia in the mouse tooth germ and oral cavity. Biomed Res 2016; 37(3): 207–214
CrossRef Pubmed Google scholar
[193]
Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, Saraga-Babic M. Expression of Ki-67, Oct-4, g-tubulin and α-tubulin in human tooth development. Arch Oral Biol 2014; 59(11): 1119–1129
CrossRef Pubmed Google scholar
[194]
Jung SY, Green DW, Jung HS, Kim EJ. Cell cycle of the enamel knot during tooth morphogenesis. Histochem Cell Biol 2018; 149(6): 655–659
CrossRef Pubmed Google scholar
[195]
Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 1994; 38(3): 463–469
Pubmed
[196]
Thivichon-Prince B, Couble ML, Giamarchi A, Delmas P, Franco B, Romio L, Struys T, Lambrichts I, Ressnikoff D, Magloire H, Bleicher F. Primary cilia of odontoblasts: possible role in molar morphogenesis. J Dent Res 2009; 88(10): 910–915
CrossRef Pubmed Google scholar
[197]
Yuan X, Liu M, Cao X, Yang S. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int J Biol Sci 2019; 15(10): 2087–2099
CrossRef Pubmed Google scholar
[198]
Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 2000; 127(22): 4775–4785
Pubmed
[199]
Ohazama A, Haycraft CJ, Seppala M, Blackburn J, Ghafoor S, Cobourne M, Martinelli DC, Fan CM, Peterkova R, Lesot H, Yoder BK, Sharpe PT. Primary cilia regulate Shh activity in the control of molar tooth number. Development 2009; 136(6): 897–903
CrossRef Pubmed Google scholar
[200]
Liu B, Chen S, Cheng D, Jing W, Helms JA. Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res 2014; 93(5): 475–482
CrossRef Pubmed Google scholar
[201]
Li G, Liu M, Zhang S, Wan H, Zhang Q, Yue R, Yan X, Wang X, Wang Z, Sun Y. Essential role of IFT140 in promoting dentinogenesis. J Dent Res 2018; 97(4): 423–431
CrossRef Pubmed Google scholar
[202]
Li X, Yang S, Han L, Mao K, Yang S. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J 2020; 34(5): 6741–6756
CrossRef Pubmed Google scholar
[203]
Kitamura A, Kawasaki M, Kawasaki K, Meguro F, Yamada A, Nagai T, Kodama Y, Trakanant S, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 is involved in mandibular development. J Anat 2020; 236(2): 317–324
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 82061130222, 81822012, 81771043, 92049201, 81770873, and 81802193), the National Science and Technology Major Project of China (No. 2016YFC-1102705), the Shanghai Academic Leader of Science and Technology Innovation Action Plan (No. 20XD1424000), and the Shanghai Experimental Animal Research Project of Science and Technology Innovation Action Plan (No. 8191101676). We also apologize to the many researchers whose work could not be cited due to the limited scope of discussion in this evolving field.

Compliance with ethics guidelines

Sijin Li, Han Zhang, and Yao Sun declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by a relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(5843 KB)

Accesses

Citations

Detail

Sections
Recommended

/