Journal home Browse Online first

Online first

The manuscripts published below will continue to be available from this page until they are assigned to an issue.
  • Select all
    Prabhakar YADAV, Kuldeep SAHAY, Malvika SRIVASTAVA, Arpit VERMA, Bal Chandra YADAV

    A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.

    Yibo GAO, Erjiang HU, Bo HUANG, Zuohua HUANG

    Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the PdxAu1−x (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation.

    Bin WANG, Bei AN, Xiaoqian LI, Shaohua SHEN

    It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

    Shams ANWAR, Xianguo LI

    Production of hydrogen, one of the most promising alternative clean fuels, through catalytic conversion from fossil fuel is the most technically and economically feasible technology. Catalytic conversion of natural gas into hydrogen and carbon is thermodynamically favorable under atmospheric conditions. However, using noble metals as a catalyst is costly for hydrogen production, thus mandating non-noble metal-based catalysts such as Ni, Co, and Cu-based alloys. This paper reviews the various hydrogen production methods from fossil fuels through pyrolysis, partial oxidation, autothermal, and steam reforming, emphasizing the catalytic production of hydrogen via steam reforming of methane. The multicomponent catalysts composed of several non-noble materials have been summarized. Of the Ni, Co, and Cu-based catalysts investigated in the literature, Ni/Al2O3 catalyst is the most economical and performs best because it suppresses the coke formation on the catalyst. To avoid carbon emission, this method of hydrogen production from methane should be integrated with carbon capture, utilization, and storage (CCUS). Carbon capture can be accomplished by absorption, adsorption, and membrane separation processes. The remaining challenges, prospects, and future research and development directions are described.

    Simiao SHA, Riyue GE, Ying LI, Julie M. CAIRNEY, Rongkun ZHENG, Sean LI, Bin LIU, Jiujun ZHANG, Wenxian LI

    High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.

    Zhouzhou WANG, Qingwei WU, Jieming WANG, Ying YU

    Hydrogen production from photoelectrochemical (PEC) water splitting has been regarded as a promising way to utilize renewable and endless solar energy. However, semiconductor film grown on photoelectrode suffers from numerous challenges, leading to the poor PEC performance. Herein, a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction. By various characterizations, it was found that the nucleation and surface growth of CuBi2O4 layer induced by 2-methoxyethanol ligand (2-CuBi2O4) demonstrated a decent crystallinity and coverage, as well as a large grain size and a low oxygen vacancy concentration, leading to the good ability of light absorption and carrier migration. Consequently, under simulated sunlight irradiation (AM1.5G, 100 mW/cm2), the 2-CuBi2O4 photocathode achieved an enhanced photocurrent density of −1.34 mA·cm−2 at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%. This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.

    Lei ZHANG, Binwei ZHANG, Xiaoyi DOU, Wei YAN
    Sibi LIU, Yijin WANG, Youzi ZHANG, Xu XIN, Peng GUO, Dongshan DENG, Jahan B. GHASEMI, Miao WANG, Ruiling WANG, Xuanhua LI

    Transition metal sulfides are commonly studied as photocatalysts for water splitting in solar-to-fuel conversion. However, the effectiveness of these photocatalysts is limited by the recombination and restricted light absorption capacity of carriers. In this paper, a broad spectrum responsive In2S3/Bi2S3 heterojunction is constructed by in-situ integrating Bi2S3 with the In2S3, derived from an In-MOF precursor, via the high-temperature sulfidation and solvothermal methods. Benefiting from the synergistic effect of wide-spectrum response, effective charge separation and transfer, and strong heterogeneous interfacial contacts, the In2S3/Bi2S3 heterojunction demonstrates a rate of 0.71 mmol/(g∙h), which is 2.2 and 1.7 times as much as those of In2S3 (0.32 mmol/(g∙h) and Bi2S3 (0.41 mmol/(g∙h)), respectively. This paper provides a novel idea for rationally designing innovative heterojunction photocatalysts of transition metal sulfides for photocatalytic hydrogen production.

    Min HONG, Zhiyong WANG, Zhangqin SHI, Zheng LIANG

    Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

    Hui LI, Changlan HOU, Yunbo ZHAI, Mengjiao TAN, Zhongliang HUANG, Zhiwei WANG, Lijian LENG, Peng LIU, Tingzhou LEI, Changzhu LI

    The reuse of biomass wastes is crucial toward today’s energy and environmental crisis, among which, biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economical solutions. In this paper, the recent advances in biofuels and high chemicals for selective production based on biochar catalysts from different biomass wastes are critically summarized. The topics mainly include the modification of biochar catalysts, the preparation of energy products, and the mechanisms of other high-value products. Suitable biochar catalysts can enhance the yield of biofuels and higher-value chemicals. Especially, the feedstock and reaction conditions of biochar catalyst, which affect the efficiency of energy products, have been the focus of recent attentions. Mechanism studies based on biochar catalysts will be helpful to the controlled products. Therefore, the design and advancement of the biochar catalyst based on mechanism research will be beneficial to increase biofuels and the conversion efficiency of chemicals into biomass. The advanced design of biochar catalysts and optimization of operational conditions based on the biomass properties are vital for the selective production of high-value chemicals and biofuels. This paper identifies the latest preparation for energy products and other high-value chemicals based on biochar catalysts progresses and offers insights into improving the yield of high selectivity for products as well as the high recyclability and low toxicity to the environment in future applications.