
Exploring 2D perovskite chemistry for advancing efficient and stable solar cells
Xinyu Zhao, Jiajun Li, Jinzhan Cheng, Xuezheng Liu, Xiaoming Zhao
Exploring 2D perovskite chemistry for advancing efficient and stable solar cells
Perovskite-based photovoltaic devices have garnered significant interest owing to their remarkable performance in converting light into electricity. Recently, the focus in the field of perovskite solar cells (PSCs) has shifted towards enhancing their durability over extended periods. One promising strategy is the incorporation of two-dimensional (2D) perovskites, known for their ability to enhance stability due to the large organic cations that act as a barrier against moisture. However, the broad optical bandgap and limited charge transport properties of 2D perovskites hinder their efficiency, making them less suitable as the sole light-absorbing material when compared to their three-dimensional (3D) counterparts. An innovative approach involves using 2D perovskite structures to modify the surface properties of 3D perovskite. This hybrid approach, known as 2D/3D perovskites, while enhancing their performance. Beyond solar energy applications, 2D perovskites offer a flexible platform for chemical engineering, allowing for significant adjustments to crystal and thin-film configurations, bandgaps, and charge transport properties through the different organic ligands and halide mixtures. Despite these advantages, challenges remain in integration of 2D perovskites into solar cells without compromising device stability. This review encapsulates the latest developments in 2D perovskite research, focusing on their structural, optoelectronic, and stability attributes, while delving into the challenges and future potential of these materials.
two-dimensional (2D) perovskites / crystal structure / thin film structure / optoelectronic properties / stability / perovskite solar cells (PSCs)
[1] |
National Renewable Energy Laboratory (NREL)
|
[2] |
Rong Y, Hu Y, Mei A.
CrossRef
Google scholar
|
[3] |
Yusoff A R M, Nazeeruddin M K. Low-dimensional perovskites: From synthesis to stability in perovskite solar cells. Advanced Energy Materials, 2018, 8(26): 1702073
CrossRef
Google scholar
|
[4] |
Saliba M, Matsui T, Seo J.
CrossRef
Google scholar
|
[5] |
Chiang Y H, Frohna K, Salway H.
CrossRef
Google scholar
|
[6] |
Wang Z, Gao H, Wu D.
CrossRef
Google scholar
|
[7] |
Li M, Sun R, Chang J.
CrossRef
Google scholar
|
[8] |
Zhao K, Liu Q, Yao L.
CrossRef
Google scholar
|
[9] |
Zhao X, Yao C, Gu K.
CrossRef
Google scholar
|
[10] |
Zhao X, Liu T, Burlingame Q C.
CrossRef
Google scholar
|
[11] |
Mariani P, Molina-García M Á, Barichello J.
CrossRef
Google scholar
|
[12] |
Wang T, Yang J, Cao Q.
CrossRef
Google scholar
|
[13] |
Zhao X, Ball M L, Kakekhani A.
CrossRef
Google scholar
|
[14] |
Zhao X, Liu T, Loo Y L. Advancing 2D perovskites for efficient and stable solar cells: Challenges and opportunities. advanced materials, 2022, 34(3): 2105849
CrossRef
Google scholar
|
[15] |
Zhao X, Liu T, Kaplan A B.
CrossRef
Google scholar
|
[16] |
Etgar L. The merit of perovskite’s dimensionality; Can this replace the 3D halide perovskite. Energy & Environmental Science, 2018, 11(2): 234–242
CrossRef
Google scholar
|
[17] |
Saparov B, Mitzi D B. Organic-inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 2016, 116(7): 4558–4596
CrossRef
Google scholar
|
[18] |
Yang S, Wang Y, Liu P.
CrossRef
Google scholar
|
[19] |
Smith I C, Hoke E T, Solis-Ibarra D.
CrossRef
Google scholar
|
[20] |
Xing Z, Fan B, Meng X.
CrossRef
Google scholar
|
[21] |
Jung E H, Jeon N J, Park E Y.
CrossRef
Google scholar
|
[22] |
Kim D H, Muzzillo C P, Tong J.
CrossRef
Google scholar
|
[23] |
Chen H, Maxwell A, Li C.
CrossRef
Google scholar
|
[24] |
Lin R, Wang Y, Lu Q.
CrossRef
Google scholar
|
[25] |
Wang Z, Lin Q, Chmiel F.
CrossRef
Google scholar
|
[26] |
Zhao X, Yao C, Liu T.
CrossRef
Google scholar
|
[27] |
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485
CrossRef
Google scholar
|
[28] |
Yuan M, Quan L, Comin R.
CrossRef
Google scholar
|
[29] |
Zhou N, Shen Y, Li L.
CrossRef
Google scholar
|
[30] |
Li C H, Liao M Y, Chen C H.
CrossRef
Google scholar
|
[31] |
Li Z, Liu N, Meng K.
CrossRef
Google scholar
|
[32] |
Shi J, Gao Y, Gao X.
CrossRef
Google scholar
|
[33] |
Zhang J, Qin J, Wang M.
CrossRef
Google scholar
|
[34] |
Liang C, Gu H, Xia Y.
CrossRef
Google scholar
|
[35] |
Cui S, Wang J, Xie H.
CrossRef
Google scholar
|
[36] |
Xu Z, Lu D, Liu F.
CrossRef
Google scholar
|
[37] |
Wu G, Yang T, Li X.
CrossRef
Google scholar
|
[38] |
Mao L, Ke W, Pedesseau L.
CrossRef
Google scholar
|
[39] |
Ahmad S, Fu P, Yu S.
CrossRef
Google scholar
|
[40] |
Soe C M M, Stoumpos C, Kepenekian M.
CrossRef
Google scholar
|
[41] |
Yan P, Zhang W, Wang C.
CrossRef
Google scholar
|
[42] |
XuK, XingZ, LiD, et al. Boosting efficiency to 22.73%: Unraveling the role of solvent environment in low-dimensional perovskites through competitive bonding interactions. Advanced Functional Materials, 2024, 2415429
|
[43] |
Guo L, Wang O, Zhao D.
CrossRef
Google scholar
|
[44] |
Numata Y, Sanehira Y, Ishikawa R.
CrossRef
Google scholar
|
[45] |
Daub M, Hillebrecht H. Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angewandte Chemie International Edition, 2015, 54(38): 11016–11017
CrossRef
Google scholar
|
[46] |
Li J, Yu Q, He Y.
CrossRef
Google scholar
|
[47] |
Umeyama D, Lin Y, Karunadasa H. Red-to-black piezochromism in a compressible Pb-I-SCN layered perovskite. Chemistry of Materials, 2016, 28(10): 3241–3244
CrossRef
Google scholar
|
[48] |
Liu S, Lu Y, Yu C.
CrossRef
Google scholar
|
[49] |
Xu Z, Chen M, Liu S F. Pseudohalide induced tunable electronic and excitonic properties in two-dimensional single-layer perovskite for photovoltaics and photoelectronic applications. Journal of Energy Chemistry, 2019, 36: 106–113
CrossRef
Google scholar
|
[50] |
Li J, Zhang X, Zhang Z.
CrossRef
Google scholar
|
[51] |
Kamminga M E, Fang H H, Filip M R.
CrossRef
Google scholar
|
[52] |
Lemmerer A, Billing D G. Lead halide inorganic-organic hybrids incorporating diammonium cations. CrystEngComm, 2012, 14(6): 1954–1966
CrossRef
Google scholar
|
[53] |
Jiang Y, Cui M, Li S.
CrossRef
Google scholar
|
[54] |
Knutson J L, Martin J D, Mitzi D B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorganic Chemistry, 2005, 44(13): 4699–4705
CrossRef
Google scholar
|
[55] |
Weber O J, Marshall K L, Dyson L M.
CrossRef
Google scholar
|
[56] |
Du K, Tu Q, Zhang X.
CrossRef
Google scholar
|
[57] |
Katan C, Pedesseau L, Kepenekian M.
CrossRef
Google scholar
|
[58] |
Liu G, Kong L, Guo P.
CrossRef
Google scholar
|
[59] |
Qi T, Grinberg I, Rappe A M. Band-gap engineering via local environment in complex oxides. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(22): 224108
CrossRef
Google scholar
|
[60] |
Liao Z, Gauquelin N, Green R J.
CrossRef
Google scholar
|
[61] |
Mercier N. (HO2C(CH2)3NH3)2(CH3NH3)Pb2I7: A predicted non-centrosymmetrical structure built up from carboxylic acid supramolecular synthons and bilayer perovskite sheets. CrystEngComm, 2005, 7(70): 429–432
CrossRef
Google scholar
|
[62] |
Mercier N, Louvain N, Bi W. Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm, 2009, 11(5): 720–734
CrossRef
Google scholar
|
[63] |
Fabini D H, Laurita G, Bechtel J S.
CrossRef
Google scholar
|
[64] |
Remsing R C, Klein M L. Lone pair rotational dynamics in solids. Physical Review Letters, 2020, 124(6): 066001
CrossRef
Google scholar
|
[65] |
Lee J H, Bristowe N C, Lee S H.
CrossRef
Google scholar
|
[66] |
Halasyamani P S. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chemistry of Materials, 2004, 16(19): 3586–3592
CrossRef
Google scholar
|
[67] |
Lufaso M W, Woodward P M. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2004, 60: 10–20
CrossRef
Google scholar
|
[68] |
Alonso J A, Martinez-Lope M J, Casais M T.
CrossRef
Google scholar
|
[69] |
Knutson J L, Martin J D, Mitzi D B. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorganic Chemistry, 2005, 44(13): 4699–4705
CrossRef
Google scholar
|
[70] |
Danelon J G, Santos R M, Dias A C.
CrossRef
Google scholar
|
[71] |
Zhang Y, Abdi-Jalebi M, Larson B W.
CrossRef
Google scholar
|
[72] |
Lin Y, Fang Y, Zhao J.
CrossRef
Google scholar
|
[73] |
Zhang F, Lu H, Tong J.
CrossRef
Google scholar
|
[74] |
Quintero-Bermudez R, Gold-Parker A, Proppe A H.
CrossRef
Google scholar
|
[75] |
Zhang F, Zhu K. Breakthrough: Phase-pure 2D perovskite films. Joule, 2021, 5(1): 14–15
CrossRef
Google scholar
|
[76] |
Liang C, Gu H, Xia Y.
CrossRef
Google scholar
|
[77] |
Sidhik S, Li W, Samani M H K.
CrossRef
Google scholar
|
[78] |
Sidhik S, Wang Y, De Siena M.
CrossRef
Google scholar
|
[79] |
Luo L, Zeng H, Wang Z.
CrossRef
Google scholar
|
[80] |
Stoumpos C C, Cao D H, Clark D J.
CrossRef
Google scholar
|
[81] |
Tsai H, Nie W, Blancon J C.
CrossRef
Google scholar
|
[82] |
Chen A Z, Shiu M, Ma J H.
CrossRef
Google scholar
|
[83] |
Fu W, Wang J, Zuo L.
CrossRef
Google scholar
|
[84] |
Zhang X, Wu G, Yang S.
CrossRef
Google scholar
|
[85] |
Qing J, Liu X, Li M.
CrossRef
Google scholar
|
[86] |
Jung H J, Stompus C C, Kanatzidis M G.
CrossRef
Google scholar
|
[87] |
Kim M, Kim G W, Lee T K.
CrossRef
Google scholar
|
[88] |
Lian X, Chen J, Qin M.
CrossRef
Google scholar
|
[89] |
Lian X, Chen J, Zhang Y.
CrossRef
Google scholar
|
[90] |
Lian X, Chen J, Zhang Y.
CrossRef
Google scholar
|
[91] |
Gao L, Zhang F, Xiao C.
CrossRef
Google scholar
|
[92] |
Li F, Zhang J, Jo S B.
CrossRef
Google scholar
|
[93] |
Zanetta A, Larini V.
CrossRef
Google scholar
|
[94] |
Chen B, Meng K, Qiao Z.
CrossRef
Google scholar
|
[95] |
Wu G, Liang R, Zhang Z.
CrossRef
Google scholar
|
[96] |
Mitzi D B, Chondroudis K, Kagan C R. Organic-inorganic electronics. IBM Journal of Research and Development, 2001, 45(1): 29–45
CrossRef
Google scholar
|
[97] |
Liu C, Huhn W, Du K Z.
CrossRef
Google scholar
|
[98] |
Kumar M, Vasudevan S. Band gap variation and structural disorder in the two-dimensional mixed-halide hybrid lead perovskites. Journal of Physical Chemistry C, 2024, 128(41): 17631–17641
CrossRef
Google scholar
|
[99] |
Gao Y, Zhang K, Lu Z.
CrossRef
Google scholar
|
[100] |
Wang Z, Ganose A M, Niu C.
CrossRef
Google scholar
|
[101] |
Mitzi D B, Chondroudis K, Kagan C R. Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore. Inorganic Chemistry, 1999, 38(26): 6246–6256
CrossRef
Google scholar
|
[102] |
Dunlap-Shohl W A, Barraza E T, Barrette A.
CrossRef
Google scholar
|
[103] |
Gao Y, Shi E, Deng S.
CrossRef
Google scholar
|
[104] |
Deng S, Snaider J M, Gao Y.
CrossRef
Google scholar
|
[105] |
Ou Z, Wang C, Tao Z G.
CrossRef
Google scholar
|
[106] |
ZhangJ, Chu L, LiuT, et al. Engineering spacer conjugation for efficient and stable 2D/3D perovskite solar cells and modules. Angewandte Chemie International Editon, 2024: e202413303
|
[107] |
Eperon G E, Leijtens T, Bush K A.
CrossRef
Google scholar
|
[108] |
Qin C, Zhang F, Qin L.
CrossRef
Google scholar
|
[109] |
Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627
CrossRef
Google scholar
|
[110] |
Chakraborty R, Nag A. Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Physical Chemistry Chemical Physics, 2021, 23(1): 82–93
CrossRef
Google scholar
|
[111] |
Mauck C M, Tisdale W A. Excitons in 2D organic–inorganic halide perovskites. Trends in Chemistry, 2019, 1(4): 380–393
CrossRef
Google scholar
|
[112] |
Li J, Wang H, Li D. Self-trapped excitons in two-dimensional perovskites. Frontiers of Optoelectronics, 2020, 13(3): 225–234
CrossRef
Google scholar
|
[113] |
Fu W, Chen H, Jen A K Y. Two-dimensional perovskites for photovoltaics. Materials Today Nano, 2021, 14: 100117
CrossRef
Google scholar
|
[114] |
Gao L, Zhang F, Chen X.
CrossRef
Google scholar
|
[115] |
Gao L, You J, Liu S. Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021, 57: 69–82
CrossRef
Google scholar
|
[116] |
Li Y, Lai Z, Meng Y.
CrossRef
Google scholar
|
[117] |
Tyagi D, Laxmi V, Basu N.
CrossRef
Google scholar
|
[118] |
Liang D, Peng Y, Fu Y.
CrossRef
Google scholar
|
[119] |
Quan L N, Yuan M, Comin R.
CrossRef
Google scholar
|
[120] |
Liu Y, Zhou H, Ni Y.
CrossRef
Google scholar
|
[121] |
Liu Y, Guo J, Zhou H.
CrossRef
Google scholar
|
[122] |
Zhang W, Liu Z, Zhang L.
CrossRef
Google scholar
|
[123] |
Lin Y, Bai Y, Fang Y.
CrossRef
Google scholar
|
[124] |
Yang T Y, Gregori G, Pellet N.
CrossRef
Google scholar
|
[125] |
Saidaminov M I, Mohammed O F, Bakr O M. Low-dimensional-networked metal halide perovskites: The next big thing. ACS Energy Letters, 2017, 2(4): 889–896
CrossRef
Google scholar
|
[126] |
Wang C, Zhang C, Huang Y.
CrossRef
Google scholar
|
[127] |
Walsh A, Scanlon D O, Chen S.
CrossRef
Google scholar
|
[128] |
Agiorgousis M L, Sun Y Y, Zeng H.
CrossRef
Google scholar
|
[129] |
Yin W J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104(6): 063903
CrossRef
Google scholar
|
[130] |
Steirer K X, Schulz P, Teeter G.
CrossRef
Google scholar
|
[131] |
Kim J, Lee S H, Lee J H.
CrossRef
Google scholar
|
[132] |
Chen B, Rudd P N, Yang S.
CrossRef
Google scholar
|
[133] |
Yuan Y, Li T, Wang Q.
CrossRef
Google scholar
|
[134] |
Tress W, Marinova N, Moehl T.
CrossRef
Google scholar
|
[135] |
Azpiroz J M, Mosconi E, Bisquert J.
CrossRef
Google scholar
|
[136] |
Eames C, Frost J M, Barnes P R.
CrossRef
Google scholar
|
[137] |
Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 2016, 49(2): 286–293
CrossRef
Google scholar
|
[138] |
Xing J, Wang Q, Dong Q.
CrossRef
Google scholar
|
[139] |
Kang D H, Park N G. On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214
CrossRef
Google scholar
|
[140] |
Bi E, Song Z, Li C.
CrossRef
Google scholar
|
[141] |
Li F, Liu M. Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(30): 15447–15459
CrossRef
Google scholar
|
[142] |
Lee J W, Dai Z, Han T H.
CrossRef
Google scholar
|
[143] |
Yuan Y, Chae J, Shao Y.
CrossRef
Google scholar
|
[144] |
Yuan Y, Wang Q, Shao Y.
CrossRef
Google scholar
|
[145] |
Carrillo J, Guerrero A, Rahimnejad S.
CrossRef
Google scholar
|
[146] |
Wu S, Chen R, Zhang S.
CrossRef
Google scholar
|
[147] |
Kato Y, Ono L K, Lee M V.
CrossRef
Google scholar
|
[148] |
Lin Y, Bai Y, Fang Y.
CrossRef
Google scholar
|
[149] |
Wang X, Wang Y, Zhang T.
CrossRef
Google scholar
|
[150] |
Mathew P, Cho J, Kamat P V. Ramifications of ion migration in 2D lead halide perovskites. ACS Energy Letters, 2024, 9(3): 1103–1114
CrossRef
Google scholar
|
[151] |
Cho J, Mathew P S, DuBose J T.
CrossRef
Google scholar
|
[152] |
Wang M, Shi Z, Fei C.
CrossRef
Google scholar
|
[153] |
Boyd C C, Cheacharoen R, Leijtens T.
CrossRef
Google scholar
|
[154] |
Reinhard P, Chirilă A, Blösch P.
CrossRef
Google scholar
|
[155] |
Yu D, Yang Y Q, Chen Z.
CrossRef
Google scholar
|
[156] |
Liu H, Liu T, Ma X.
CrossRef
Google scholar
|
[157] |
Kim H, Lee S U, Lee D Y.
CrossRef
Google scholar
|
[158] |
Liu G, Zheng H, Xu X.
CrossRef
Google scholar
|
/
〈 |
|
〉 |