
Nanomaterials-based enzymatic biofuel cells for wearable and implantable bioelectronics
Jingyao Wang, Jiwei Ma, Hongfei Cheng
Nanomaterials-based enzymatic biofuel cells for wearable and implantable bioelectronics
Enzymatic biofuel cells (EBFCs), which generate electricity through electrochemical reactions between metabolites and O2/air, are considered a promising alternative power source for wearable and implantable bioelectronics. However, the main challenges facing EBFCs are the poor stability of enzymes and the low electron transfer efficiency between enzymes and electrodes. To enhance the efficiency of EBFCs, researchers have been focusing on the development of novel functional nanomaterials. This mini-review first introduces the working principles and types of EBFCs, highlighting the key roles of nanomaterials, such as enzyme immobilization and stabilization, promotion of electron transfer and catalytic activity. It then summarizes the recent advancements in their application in wearable and implantable devices. Finally, it explores future research direction and the potential of high-performance EBFCs for practical applications.
enzymatic biofuel cells / functional nanomaterials / self-powered bioelectronics / wearable electronics
[1] |
Huang X , Wang L , Wang H .
CrossRef
Google scholar
|
[2] |
Xiao X , Xia H , Wu R .
CrossRef
Google scholar
|
[3] |
Gamella M , Koushanpour A , Katz E . Biofuel cells—Activation of micro- and macro-electronic devices. Bioelectrochemistry, 2018, 119: 33–42
CrossRef
Google scholar
|
[4] |
Cao L , Chen J , Pang J .
CrossRef
Google scholar
|
[5] |
Gross A J , Holzinger M , Cosnier S . Buckypaper bioelectrodes: Emerging materials for implantable and wearable biofuel cells. Energy & Environmental Science, 2018, 11(7): 1670–1687
|
[6] |
Cai J , Shen F , Zhao J .
CrossRef
Google scholar
|
[7] |
Khan H , Tanveer M , Park C W .
CrossRef
Google scholar
|
[8] |
Sun M , Gu Y , Pei X .
CrossRef
Google scholar
|
[9] |
Kizling M , Dzwonek M , Nowak A .
CrossRef
Google scholar
|
[10] |
Bollella P , Boeva Z , Latonen R M .
CrossRef
Google scholar
|
[11] |
Huang X , Zhang L , Zhang Z .
CrossRef
Google scholar
|
[12] |
Mano N , de Poulpiquet A . O2 reduction in enzymatic biofuel cells. Chemical Reviews, 2018, 118(5): 2392–2468
CrossRef
Google scholar
|
[13] |
Jeerapan I , Sempionatto J R , Wang J . On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Advanced Functional Materials, 2020, 30(29): 1906243
CrossRef
Google scholar
|
[14] |
Wu H , Zhang Y , Kjøniksen A L .
CrossRef
Google scholar
|
[15] |
Emir G , Dilgin Y , Sahin S .
CrossRef
Google scholar
|
[16] |
Li Z , Kang Z , Wu B .
CrossRef
Google scholar
|
[17] |
Gentil S , Che Mansor S M , Jamet H .
CrossRef
Google scholar
|
[18] |
Su F , Wu Y , Yang H . Improving the performance of glucose oxidase biofuel cell by methyl red and chitosan composite electrodes. Biosensors & Bioelectronics: X, 2024, 21: 100534
CrossRef
Google scholar
|
[19] |
Babadi A A , Wan-Mohtar W A A Q I , Chang J S .
CrossRef
Google scholar
|
[20] |
Lee J , Hyun K , Park J M .
CrossRef
Google scholar
|
[21] |
Kabir M H , Marquez E , Djokoto G .
CrossRef
Google scholar
|
[22] |
Ye J , Lu J , Wen D . Engineering carbon nanomaterials toward high-efficiency bioelectrocatalysis for enzymatic biofuel cells: A review. Materials Chemistry Frontiers, 2023, 7(22): 5806–5825
CrossRef
Google scholar
|
[23] |
Niiyama A , Murata K , Shigemori Y .
CrossRef
Google scholar
|
[24] |
Shitanda I , Takamatsu K , Niiyama A .
CrossRef
Google scholar
|
[25] |
Mazurenko I , Clément R , Byrne-Kodjabachian D .
CrossRef
Google scholar
|
[26] |
Haque S , Duteanu N , Nasar A .
CrossRef
Google scholar
|
[27] |
Xiao X , Siepenkoetter T , Conghaile P O .
CrossRef
Google scholar
|
[28] |
Chung M , Nguyen T L , Tran T Q N .
CrossRef
Google scholar
|
[29] |
Vo T N , Tran T D , Nguyen H K .
CrossRef
Google scholar
|
[30] |
Sakthivel M , Ramaraj S , Chen S M .
CrossRef
Google scholar
|
[31] |
Shakeel N , Ahamed M I .
CrossRef
Google scholar
|
[32] |
Inamuddin H A . Ternary graphene@polyaniline-TiO2 composite for glucose biofuel cell anode application. International Journal of Hydrogen Energy, 2019, 44(39): 22173–22180
CrossRef
Google scholar
|
[33] |
Inamuddin S , Shakeel N , Imran Ahamed M .
CrossRef
Google scholar
|
[34] |
Babadi A A , Fakhlaei R , Rahmati S .
CrossRef
Google scholar
|
[35] |
Yimamumaimaiti T , Lu X , Zhang J R .
CrossRef
Google scholar
|
[36] |
Li X , Feng Q , Lu K .
CrossRef
Google scholar
|
[37] |
Li X , Li D , Zhang Y .
CrossRef
Google scholar
|
[38] |
Cang Y , Yuan Y , Zhang K .
CrossRef
Google scholar
|
[39] |
Yan Y , Guo L , Geng H .
CrossRef
Google scholar
|
[40] |
Ortiz-Medina J , Wang Z , Cruz-Silva R .
CrossRef
Google scholar
|
[41] |
ul Haque S , Nasar A , Duteanu N .
CrossRef
Google scholar
|
[42] |
Tang J , Yan X , Engelbrekt C .
CrossRef
Google scholar
|
[43] |
Tang J , Werchmeister R M L , Preda L .
CrossRef
Google scholar
|
[44] |
Hasan M Q , Kuis R , Narayanan J S .
CrossRef
Google scholar
|
[45] |
Navaee A , Salimi A . FAD-based glucose dehydrogenase immobilized on thionine/AuNPs frameworks grafted on amino-CNTs: Development of high power glucose biofuel cell and biosensor. Journal of Electroanalytical Chemistry, 2018, 815: 105–113
CrossRef
Google scholar
|
[46] |
Sun Y , Qin T , Liu X .
CrossRef
Google scholar
|
[47] |
Kwon C H , Ko Y , Shin D .
CrossRef
Google scholar
|
[48] |
Kwon C H , Ko Y , Shin D .
CrossRef
Google scholar
|
[49] |
Zhang J , Huang X , Zhang L .
CrossRef
Google scholar
|
[50] |
Kang M , Nam D , Ahn J .
CrossRef
Google scholar
|
[51] |
Karim A , Yang H . Mini-review: Recent technologies of electrode and system in the enzymatic biofuel cell (EBFC). Applied Sciences, 2021, 11: 5197
CrossRef
Google scholar
|
[52] |
Sakai K , Xia H , Kitazumi Y .
CrossRef
Google scholar
|
[53] |
Olloqui-Sariego J L , Calvente J J , Andreu R . Immobilizing redox enzymes at mesoporous and nanostructured electrodes. Current Opinion in Electrochemistry, 2021, 26: 100658
CrossRef
Google scholar
|
[54] |
Yu S , Myung N V . Recent advances in the direct electron transfer-enabled enzymatic fuel cells. Frontiers in Chemistry, 2020, 8: 620153
CrossRef
Google scholar
|
[55] |
Dai Q , Yang L , Wang Y .
CrossRef
Google scholar
|
[56] |
Elouarzaki K , Cheng D , Fisher A C .
CrossRef
Google scholar
|
[57] |
Li G , Li Z , Xiao X .
CrossRef
Google scholar
|
[58] |
Lavanya J , Subbiah A , Neogi S .
CrossRef
Google scholar
|
[59] |
Wang L L , Shao H H , Wang W J .
CrossRef
Google scholar
|
[60] |
Guan S , Wang J , Yang Y .
CrossRef
Google scholar
|
[61] |
Wang Z , Li Y , Shi Z .
CrossRef
Google scholar
|
[62] |
Xiao Y , Patolsky F , Katz E .
CrossRef
Google scholar
|
[63] |
Trifonov A , Stemmer A , Tel-Vered R . Enzymatic self-wiring in nanopores and its application in direct electron transfer biofuel cells. Nanoscale Advances, 2019, 1(1): 347–356
CrossRef
Google scholar
|
[64] |
Mazurenko I , Hitaishi V P , Lojou E . Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Current Opinion in Electrochemistry, 2020, 19: 113–121
CrossRef
Google scholar
|
[65] |
Wang K , Hong Q , Zhu C .
CrossRef
Google scholar
|
[66] |
Ru X , Chen H , Zhang Z .
CrossRef
Google scholar
|
[67] |
Yu Y , Nassar J , Xu C .
CrossRef
Google scholar
|
[68] |
Gong S , Du S , Kong J .
CrossRef
Google scholar
|
[69] |
Chu T F , Lin F Y , Kuznetsova I .
CrossRef
Google scholar
|
[70] |
Han H H , Jung S M , Kim S K .
CrossRef
Google scholar
|
[71] |
Ji J , Woo J , Chung Y .
CrossRef
Google scholar
|
[72] |
Ji J , Woo J , Chung Y .
CrossRef
Google scholar
|
[73] |
Feng X , Xiao X , Zhang J .
CrossRef
Google scholar
|
[74] |
Zhang H , Huang L , Chen J .
CrossRef
Google scholar
|
[75] |
Zhao P , Sun X , Hao S .
CrossRef
Google scholar
|
[76] |
Chen H , Bai Z , Dai X .
CrossRef
Google scholar
|
[77] |
Escalona-Villalpando R A , Ortiz-Ortega E , Bocanegra-Ugalde J P .
CrossRef
Google scholar
|
[78] |
Wang C , Shim E , Chang H K .
CrossRef
Google scholar
|
[79] |
Vanmathi S , Goel S . Microfluidic carbon cloth-based enzymatic glucose biofuel cell for sustainably powering a microelectronic circuit. Journal of Micromechanics and Microengineering, 2024, 34(8): 085004
CrossRef
Google scholar
|
[80] |
Tominaga M , Kuwahara K , Tsushida M .
CrossRef
Google scholar
|
[81] |
Shen F , Pankratov D , Halder A .
CrossRef
Google scholar
|
[82] |
Kong X , Gai P , Ge L .
CrossRef
Google scholar
|
[83] |
Bandodkar A J , Gutruf P , Choi J .
CrossRef
Google scholar
|
[84] |
Huang X , Li H , Li J .
CrossRef
Google scholar
|
[85] |
Shitanda I , Morigayama Y , Iwashita R .
CrossRef
Google scholar
|
[86] |
Rewatkar P , Goel S . Paper-based membraneless co-laminar microfluidic glucose biofuel cell with MWCNT-fed bucky paper bioelectrodes. IEEE Transactions on Nanobioscience, 2018, 17(4): 374–379
CrossRef
Google scholar
|
[87] |
Rewatkar P , Kothuru A , Goel S . PDMS-based microfluidic glucose biofuel cell integrated with optimized laser-induced flexible graphene bioelectrodes. IEEE Transactions on Electron Devices, 2020, 67(4): 1832–1838
CrossRef
Google scholar
|
[88] |
Yin S , Liu X , Kaji T .
CrossRef
Google scholar
|
[89] |
Lee J , Kim K Y , Kwon Y .
CrossRef
Google scholar
|
[90] |
Sim H J , Lee D Y , Kim H .
CrossRef
Google scholar
|
[91] |
Wang J , Sun M , Pei X .
CrossRef
Google scholar
|
[92] |
Shen F , Pankratov D , Pankratova G .
CrossRef
Google scholar
|
[93] |
Wan J , Mi L , Tian Z .
CrossRef
Google scholar
|
[94] |
Lv J , Jeerapan I , Tehrani F .
CrossRef
Google scholar
|
[95] |
Lee D , Jeong S H , Yun S .
CrossRef
Google scholar
|
[96] |
Yin L , Kim K N , Lv J .
CrossRef
Google scholar
|
[97] |
Yun J , Li Z , Miao X .
CrossRef
Google scholar
|
[98] |
Pankratova G , Bollella P , Pankratov D .
CrossRef
Google scholar
|
[99] |
Lee J , Han S , Kwon Y . Self-charging hybrid energy devices collaborated with enzymatic biofuel cells and supercapacitors. Chemical Engineering Journal, 2024, 487: 150557
CrossRef
Google scholar
|
[100] |
Pankratov D , Shen F , Ortiz R .
CrossRef
Google scholar
|
[101] |
Guan S , Yang Y , Wang Y .
CrossRef
Google scholar
|
[102] |
Huang J , Zhang Y , Ding F .
CrossRef
Google scholar
|
[103] |
Katz E , Bückmann A F , Willner I . Self-powered enzyme-based biosensors. Journal of the American Chemical Society, 2001, 123(43): 10752–10753
CrossRef
Google scholar
|
[104] |
Shitanda I , Fujimura Y , Nohara S .
CrossRef
Google scholar
|
[105] |
Ohayon D , Nikiforidis G , Savva A .
CrossRef
Google scholar
|
[106] |
Hao S , Zhang H , Sun X .
CrossRef
Google scholar
|
[107] |
Lv P , Zhou H , Mensah A .
CrossRef
Google scholar
|
[108] |
Hou Y Y , Xu J , Xie W Z .
CrossRef
Google scholar
|
[109] |
Song Y , Ya Y , Cen X .
CrossRef
Google scholar
|
[110] |
Ji K , Liang Z , Wang P .
CrossRef
Google scholar
|
[111] |
Zhang J , Liu J , Su H .
CrossRef
Google scholar
|
[112] |
Nithianandam P , Liu T L , Chen S .
CrossRef
Google scholar
|
[113] |
Gu C , Gai P , Kong X .
CrossRef
Google scholar
|
[114] |
Wang F T , Wang Y H , Xu J .
CrossRef
Google scholar
|
[115] |
Gai P , Gu C , Hou T .
CrossRef
Google scholar
|
[116] |
Gu C , Kong X , Liu X .
CrossRef
Google scholar
|
[117] |
Gu C , Gai P , Han L .
CrossRef
Google scholar
|
[118] |
Wang F T , Wang Y H , Xu J .
CrossRef
Google scholar
|
[119] |
Zhou M , Zhou N , Kuralay F .
CrossRef
Google scholar
|
[120] |
Ogawa Y , Kato K , Miyake T .
CrossRef
Google scholar
|
[121] |
Xiao X , McGourty K D , Magner E . Enzymatic biofuel cells for self-powered, controlled drug release. Journal of the American Chemical Society, 2020, 142(26): 11602–11609
CrossRef
Google scholar
|
[122] |
Bollella P , Guo Z , Edwardraja S .
CrossRef
Google scholar
|
[123] |
Herkendell K , Stemmer A , Tel-Vered R . Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes. Nano Research, 2019, 12(4): 767–775
CrossRef
Google scholar
|
[124] |
Lee S S , Choi K H , Kim S H .
CrossRef
Google scholar
|
[125] |
Pak J , Chang W , Kwon C H .
CrossRef
Google scholar
|
/
〈 |
|
〉 |