
Recent trends in CO2 reduction through various catalytic methods to achieve carbon-neutral goals: A comprehensive bibliometric analysis
Xuxu Guo, Hangrang Zhang, Yang Su, Yingtang Zhou
Recent trends in CO2 reduction through various catalytic methods to achieve carbon-neutral goals: A comprehensive bibliometric analysis
The extensive utilization of fossil fuels has led to a significant increase in carbon dioxide (CO2) emissions, contributing to global warming and environmental pollution, which pose major threats to human survival. To mitigate these effects, many researchers are actively employing state-of-the-art technologies to convert CO2 into valuable chemicals and fuels, thereby supporting sustainable development. However, few studies have employed bibliometric methods to systematically analyze research trends in CO2 reduction reaction (CO2RR), resulting in limited macroscopic insights into this field. This study aims to conduct a scientometric analysis of academic literature on electrocatalytic, photocatalytic, and thermocatalytic CO2RR from 2015 to 2023. Utilizing bibliometric analysis tools Citespace, Bibliometrix, and Vosviewer for data visualization, it establishes a knowledge framework for catalytic CO2RR. The results show that China, the United States, and India are the top three countries with the highest number of published papers in this field, with China and the United States having the highest levels of collaboration. The journal Applied Catalysis B-Environmental published the most articles and received the highest citation count, with 3.4% of the articles in this field appearing in the journal and a total of 62526 citations. Keyword analysis revealed that terms like “CO2RR,” “CO2,” “conversion,” and “reduction” are the most frequently occurring, indicating key areas of focus. Additionally, “selectivity” and “heterojunction” emerged as prominent research hotspots. The discussion section highlights the current challenges in the field and proposes potential strategies to address these obstacles, providing valuable insights for research in the field of catalytic CO2RR.
CO2 reduction / electrocatalysis / photocatalysis / thermal catalysis / bibliometrics
[1] |
Cui R Y , Hultman N , Cui D Y .
CrossRef
Google scholar
|
[2] |
Chen J , Chen Q H , Hu L .
CrossRef
Google scholar
|
[3] |
Guene Lougou B , Geng B X , Pan R M .
CrossRef
Google scholar
|
[4] |
Luc W , Ko B H , Kattel S .
CrossRef
Google scholar
|
[5] |
Yin Y Y , Kang X C , Han B X . Two-dimensional materials: Synthesis and applications in the electro-reduction of carbon dioxide. Chemical Synthesis, 2022, 2: 19
CrossRef
Google scholar
|
[6] |
Sempuga B C , Yao Y L . CO2 hydrogenation from a process synthesis perspective: Setting up process targets. Journal of CO2 Utilization, 2017, 20: 34–42
CrossRef
Google scholar
|
[7] |
Lee S , Ju H , Machunda R .
CrossRef
Google scholar
|
[8] |
Wang J Q , Kang D R , Shen B X .
CrossRef
Google scholar
|
[9] |
Nisbet E G , Fisher R E , Lowry D .
CrossRef
Google scholar
|
[10] |
Ren C J , Ni W , Li H D . Recent progress in electrocatalytic reduction of CO2. Catalysts, 2023, 13(4): 644
CrossRef
Google scholar
|
[11] |
Jiang X , Chen R , Chen Y X .
|
[12] |
Xu X M , Zhong Y J , Wajrak M .
CrossRef
Google scholar
|
[13] |
Varela A S , Ju W , Bagger A .
CrossRef
Google scholar
|
[14] |
Wu Z X , Wu H B , Cai W Q .
CrossRef
Google scholar
|
[15] |
Zeng Z P , Gan L Y , Yang H B .
CrossRef
Google scholar
|
[16] |
Li F H , Tang Q . Understanding trends in the activity and selectivity of bi-atom catalysts for the electrochemical reduction of carbon dioxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(13): 8761–8771
CrossRef
Google scholar
|
[17] |
Han L , Wang C W , Xu H P .
CrossRef
Google scholar
|
[18] |
Han L , Wang C W , Luo S S .
CrossRef
Google scholar
|
[19] |
Xiao L F , Gao S S , Liao R H .
CrossRef
Google scholar
|
[20] |
Chen M S , Sun M Y Z , Cao X Q .
CrossRef
Google scholar
|
[21] |
Naseem F , Lu P L , Zeng J P .
CrossRef
Google scholar
|
[22] |
Liu G M , Tang Z Q , Gu X K .
CrossRef
Google scholar
|
[23] |
Zhu Z H , Tao H C , Zhang R K .
CrossRef
Google scholar
|
[24] |
Kawanami H , Grills D C , Ishizaka T .
CrossRef
Google scholar
|
[25] |
Wang J , Su Z J , Zhang Y B .
CrossRef
Google scholar
|
[26] |
Yang D W, Li L, Wang Q, et al. Catalytic mechanism of ionic liquid for CO2 electrochemical reduction. Chemical Journal of Chinese Universities, 2016, 37(1): 94–99 (in Chinese)
|
[27] |
Wang J H , Cao X Q , Cui X Y .
CrossRef
Google scholar
|
[28] |
Zhao X H , Chen J , Zhao C X .
CrossRef
Google scholar
|
[29] |
Li H , Gao C , Yang G .
CrossRef
Google scholar
|
[30] |
Ge H T , Gu Z X , Han P .
CrossRef
Google scholar
|
[31] |
Han P , Yu X M , Yuan D .
CrossRef
Google scholar
|
[32] |
Li X F , Zhu Q L . MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2(3): 100033
CrossRef
Google scholar
|
[33] |
Yadav V S K , Noh Y , Han H .
CrossRef
Google scholar
|
[34] |
Fan J S , Peng Z , Cai J .
CrossRef
Google scholar
|
[35] |
Fan J S , Shi L , Ge H N .
CrossRef
Google scholar
|
[36] |
Chang H H , Wei L W , Huang H L .
CrossRef
Google scholar
|
[37] |
Wang H X, Jiang D, Wu D, et al. Photocatalytic reduction of CO2 on TiO2 catalysts. Progress in Chemistry, 2012, 24(11): 2116–2123 (in Chinese)
|
[38] |
Xie F J , Chen R , Zhu X .
CrossRef
Google scholar
|
[39] |
Chen J , Hu L , Chen Q H .
CrossRef
Google scholar
|
[40] |
Liu M M , Liang G Z , Zhang N C .
CrossRef
Google scholar
|
[41] |
Chen Q , Li J L , Mo Q L .
CrossRef
Google scholar
|
[42] |
Li Q , Ma D D , Zhou S H .
CrossRef
Google scholar
|
[43] |
Rusdan N A , Timmiati S N , Isahak W .
CrossRef
Google scholar
|
[44] |
Zhang J P , Li Z W , Zhang Z H .
CrossRef
Google scholar
|
[45] |
Chen J , Gui P F , Ding T .
CrossRef
Google scholar
|
[46] |
Liu P , Wu Q , Yan K .
CrossRef
Google scholar
|
[47] |
Ronchin L , Tortato C , Pavanetto A .
CrossRef
Google scholar
|
[48] |
Zhang J L , Li Z , He J .
CrossRef
Google scholar
|
[49] |
Kleiber S , Loder A , Siebenhofer M .
CrossRef
Google scholar
|
[50] |
Li L C , Miyazaki S , Wu Z Y .
CrossRef
Google scholar
|
[51] |
Lyu Q , Xin F . Review on mercury control during co-firing coal and biomass under O2/CO2 atmosphere. Applied Sciences-Basel, 2024, 14(10): 4209
CrossRef
Google scholar
|
[52] |
Nguyen D L , Kim Y , Hwang Y J .
CrossRef
Google scholar
|
[53] |
Khaidar D M , Isahak W , Ramli Z A C .
CrossRef
Google scholar
|
[54] |
Xu K L , Zhang Q M , Zhou X X .
CrossRef
Google scholar
|
[55] |
Wu J , Wu X Y , Zhang J W . Development trend and frontier of stormwater management (1980–2019): A bibliometric overview based on CiteSpace. Water, 2019, 11(9): 1908
CrossRef
Google scholar
|
[56] |
Kokol P , Vošner H B , Završnik J . Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Information and Libraries Journal, 2021, 38(2): 125–138
CrossRef
Google scholar
|
[57] |
Krymskaya A S . The bibliometrics of bibliometrics as a new area of research. Scientific and Technical Information Processing, 2023, 50(4): 286–291
CrossRef
Google scholar
|
[58] |
Ninkov A , Frank J R , Maggio L A . Bibliometrics: Methods for studying academic publishing. Perspectives on Medical Education, 2021, 11(3): 173–176
CrossRef
Google scholar
|
[59] |
Geng Y Q , Zhang X R , Gao J .
CrossRef
Google scholar
|
[60] |
Zhou Y F , Hu Z Z , Yuan H .
CrossRef
Google scholar
|
[61] |
Chen M S , Zhang H R , Li H .
CrossRef
Google scholar
|
[62] |
He J , Wang X D , Lan S Y .
CrossRef
Google scholar
|
[63] |
Oyewola D O , Dada E G . Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Applied Sciences, 2022, 4(5): 143
CrossRef
Google scholar
|
[64] |
Zhao J Y , Li M . Worldwide trends in prediabetes from 1985 to 2022: A bibliometric analysis using bibliometrix R-tool. Frontiers in Public Health, 2023, 11: 1072521
CrossRef
Google scholar
|
[65] |
Luckyardi S , Hurriyati R , Disman D .
CrossRef
Google scholar
|
[66] |
Nandiyanto A B D , Al Husaeni D F . A bibliometric analysis of materials research in Indonesian journal using VOSviewer. Journal of Engineering Research, 2021, 9: 16
CrossRef
Google scholar
|
[67] |
Alcaide-Ruiz M D , Bravo-Urquiza F , Moreno-Ureba E . Sustainability committee research: A bibliometric study. Sustainability, 2022, 14(23): 16136
CrossRef
Google scholar
|
[68] |
Tan H Y , Mong G R , Wong S L .
|
[69] |
Hu L , Chen Q H , Yang T T .
CrossRef
Google scholar
|
[70] |
Chen Z W , Shen Z W , Hua Z L .
CrossRef
Google scholar
|
[71] |
Xie P . Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics, 2015, 105(1): 611–622
CrossRef
Google scholar
|
[72] |
Wang X Y , Li D , Huang X H .
CrossRef
Google scholar
|
[73] |
Cramer H H , Chatterjee B , Weyhermuller T .
CrossRef
Google scholar
|
[74] |
Miola M , Hu X M , Brandiele R .
CrossRef
Google scholar
|
[75] |
Wakimoto H , Yamasaki H , Kuroki T .
CrossRef
Google scholar
|
[76] |
Yang Y S , Tan Z H , Zhang J L . Electrocatalytic carbon dioxide reduction to ethylene over copper-based catalytic systems. Chemistry, An Asian Journal, 2022, 17(24): e202200893
CrossRef
Google scholar
|
[77] |
Soodi S , Zhang J J , Zhang J .
CrossRef
Google scholar
|
[78] |
Chai S S , Men Y , Wang J G .
CrossRef
Google scholar
|
[79] |
Collado L , García-Tecedor M , Gomez-Mendoza M .
CrossRef
Google scholar
|
[80] |
Liu J Y , Gong X Q , Li R X .
CrossRef
Google scholar
|
[81] |
Song G X , Lang X F , Huo C X .
CrossRef
Google scholar
|
[82] |
Takanabe K , Nagaoka K , Nariai K .
CrossRef
Google scholar
|
[83] |
Sun M Y Z , Chen M S , Cui X Y .
CrossRef
Google scholar
|
[84] |
Dau H , Fujita E , Sun L C . Artificial photosynthesis: Beyond mimicking nature. ChemSusChem, 2017, 10(22): 4228–4235
CrossRef
Google scholar
|
[85] |
Kumar A , Hasija V , Sudhaik A .
CrossRef
Google scholar
|
[86] |
Qu J F , Yang T Y , Zhang P Y .
CrossRef
Google scholar
|
[87] |
Tan Y , Ma J , Zhang F .
CrossRef
Google scholar
|
[88] |
Wang J W , Zhong D C , Lu T B . Artificial photosynthesis: Catalytic water oxidation and CO2 reduction by dinuclear non-noble-metal molecular catalysts. Coordination Chemistry Reviews, 2018, 377: 225–236
CrossRef
Google scholar
|
[89] |
Zhang D S, Tung C H, Wu L Z. Artificial photosynthesis. Progress in Chemistry, 2022, 34(7): 1590–1599 (in Chinese)
|
[90] |
Chen X , Jin F M . Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Frontiers in Energy, 2019, 13(2): 207–220
CrossRef
Google scholar
|
[91] |
Lai Y S , Cheng C T , Liou J L .
CrossRef
Google scholar
|
[92] |
Luo D M , Bi Y , Kan W .
CrossRef
Google scholar
|
[93] |
Chen Z S , Zhang G X , Cao S Y .
|
[94] |
Dey A , Maiti D , Lahiri G K . Photoelectrocatalytic reduction of CO2 into C1 products by using modified-semiconductor-based catalyst systems. Asian Journal of Organic Chemistry, 2017, 6(11): 1519–1530
CrossRef
Google scholar
|
[95] |
Liu H F , Dao A Q , Fu C Y . Activities of combined TiO2 semiconductor nanocatalysts under solar light on the reduction of CO2. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3437–3446
CrossRef
Google scholar
|
[96] |
Ran J R , Jaroniec M , Qiao S Z . Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Advanced Materials, 2018, 30(7): 1704649
CrossRef
Google scholar
|
[97] |
Yu X G , Wei Y , Chen Y .
CrossRef
Google scholar
|
[98] |
Hu Y X , Abazari R , Sanati S .
CrossRef
Google scholar
|
[99] |
Kitada M , Goo Z L , Kosugi K .
CrossRef
Google scholar
|
[100] |
Yu S Y , Yang N J , Liu S T .
CrossRef
Google scholar
|
[101] |
Beinlich S D , Hörmann N G , Reuter K . Field effects at protruding defect sites in electrocatalysis at metal electrodes. ACS Catalysis, 2022, 12(10): 6143–6148
CrossRef
Google scholar
|
[102] |
Medvedev J J , Medvedeva X V , Engelhardt H .
CrossRef
Google scholar
|
[103] |
Yano H , Shirai F , Nakayama M .
CrossRef
Google scholar
|
[104] |
Fang Z K , Li S Z , Gong Y B .
CrossRef
Google scholar
|
[105] |
Gao J Q , Shen Q Q , Guan R F .
CrossRef
Google scholar
|
[106] |
Liu Y S , Yamaguchi A , Yang Y .
CrossRef
Google scholar
|
[107] |
Liu H M , Li M , Dao T D .
CrossRef
Google scholar
|
[108] |
Zhao Z H , Fan J M , Xie M M .
CrossRef
Google scholar
|
[109] |
Bonin J , Maurin A , Robert M . Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coordination Chemistry Reviews, 2017, 334: 184–198
CrossRef
Google scholar
|
[110] |
Franco F , Fernández S , Lloret-Fillol J . Advances in the electrochemical catalytic reduction of CO2 with metal complexes. Current Opinion in Electrochemistry, 2019, 15: 109–117
CrossRef
Google scholar
|
[111] |
Lei K , Xia B . Electrocatalytic CO2 reduction: From discrete molecular catalysts to their integrated catalytic materials. Chemistry, 2022, 28(30): 15
CrossRef
Google scholar
|
[112] |
Zhang L J , Jin N , Yang Y B .
CrossRef
Google scholar
|
[113] |
Wu Y H , Chen C J , Yan X P .
CrossRef
Google scholar
|
[114] |
Li Y , He Z J , Wu F X .
|
[115] |
Yang J M , Yang K F , Zhu X W .
CrossRef
Google scholar
|
[116] |
Fang X Z , Lei S , Feng Z W .
CrossRef
Google scholar
|
[117] |
Yang W Q , Zhou Y , Zhao J L .
CrossRef
Google scholar
|
[118] |
Zhu Q B , Xuan Y M , Zhang K .
CrossRef
Google scholar
|
[119] |
Sun N C , Zhou M , Ma X X .
CrossRef
Google scholar
|
[120] |
Wen Y F , Zeng X S , Xiao Y A .
CrossRef
Google scholar
|
[121] |
Liu J H , Cao X H , Wang R R .
CrossRef
Google scholar
|
[122] |
Torelli D A , Francis S A , Crompton J C .
CrossRef
Google scholar
|
[123] |
Gorthy S , Verma S , Sinha N .
CrossRef
Google scholar
|
[124] |
Liu J H , Yang L M , Ganz E . Two-dimensional organometallic TM3–C12S12 monolayers for electrocatalytic reduction of CO2. Energy & Environmental Materials, 2019, 2(3): 193–200
CrossRef
Google scholar
|
[125] |
Qiu L Q , Li H R , He L N . Incorporating catalytic units into nanomaterials: Rational design of multipurpose catalysts for CO2 valorization. Accounts of Chemical Research, 2023, 56(16): 2225–2240
CrossRef
Google scholar
|
[126] |
Wu Q J , Liang J , Huang Y B .
CrossRef
Google scholar
|
[127] |
Duma Z G , Dyosiba X , Moma J .
CrossRef
Google scholar
|
[128] |
Liu K G , Bigdeli F , Panjehpour A .
CrossRef
Google scholar
|
[129] |
Hussain N , Abdelkareem M A , Alawadhi H .
CrossRef
Google scholar
|
[130] |
Yang H J , Yang D M , Xiao N .
CrossRef
Google scholar
|
[131] |
Duan S H , Wu S F , Wang L .
CrossRef
Google scholar
|
/
〈 |
|
〉 |