
In situ construction of Cs3Bi2I9/WO3 0D/1D Z-scheme heterojunction photocatalyst for photochemical CO2 reduction under visible light
Yan Ding, Yihao Zhang, Fei Zhang, Pei Tian, Yiduo Wang, Shaohua Shen, Jinjia Wei, Jie Chen
In situ construction of Cs3Bi2I9/WO3 0D/1D Z-scheme heterojunction photocatalyst for photochemical CO2 reduction under visible light
The photocatalytic efficiency of lead-free Bi-based halide perovskites, such as Cs3Bi2X9 (X = Br, I) for CO2 reduction is often hindered by self-aggregation and insufficient oxidation ability. In this work, a visible-light-driven (λ > 420 nm) Z-scheme heterojunction photocatalyst composed of 0D Cs3Bi2I9 nanoparticles on 1D WO3 nanorods for photocatalytic CO2 reduction and water oxidation is synthesized using an in situ growing approach. The resulting 0D/1D Cs3Bi2I9/WO3 Z-scheme heterojunction photocatalyst exhibits a visible-light-driven photocatalytic CO2 reduction performance for selective CO production, achieving a selectivity of 98.7% and a high rate of 16.5 μmol/(g·h), approximately three times that of pristine Cs3Bi2I9. Furthermore, it demonstrates decent stability in the gas-solid photocatalytic CO2 reduction system. The improved performance of Cs3Bi2I9/WO3 is attributed to the formation of the 0D/1D Z-scheme heterojunction, which facilitates charge transfer, reduces charge recombination, and maintains the active sites of both 0D Cs3Bi2I9 for CO2 reduction and 1D WO3 for water oxidation. This work provides valuable insights into the potential of morphological engineering and the design of simultaneous Z-scheme heterojunction for lead-free halide perovskites.
lead-free halide perovskites / 0D/1D structure / Z-scheme heterojunction / photocatalytic CO2 reduction / morphological engineering
[1] |
Ee A W L, Lee J T E, Tian H.
CrossRef
Google scholar
|
[2] |
Wang H, Wang H, Wang Z.
CrossRef
Google scholar
|
[3] |
Chen G, Zhou Z, Li B.
CrossRef
Google scholar
|
[4] |
ZouG, WangQ, YeG, et al. Copolymerization of poly (triazine imide) single crystal nanoplates with enhanced charge transfer for efficient photocatalytic overall water splitting. Advanced Functional Materials, 2024, 2420899
|
[5] |
Ortiz-Quiñonez J L, Pal U. Interface engineered metal oxide heterojunction nanostructures in photocatalytic CO2 reduction: Progress and prospects. Coordination Chemistry Reviews, 2024, 516: 215967
CrossRef
Google scholar
|
[6] |
Wang H K, Zhang M R, Su K.
CrossRef
Google scholar
|
[7] |
Tang W, Meng J, Ding T.
CrossRef
Google scholar
|
[8] |
Yu J, Muhetaer A, Li Q.
CrossRef
Google scholar
|
[9] |
Li S, Li Y L, Bai H M.
CrossRef
Google scholar
|
[10] |
Ding L, Ding Y, Bai F.
CrossRef
Google scholar
|
[11] |
Zhang G, Li G, Heil T.
CrossRef
Google scholar
|
[12] |
Feng Y, Chen D, Zhong Y.
|
[13] |
Zhang C, Ding M, Ren Y.
CrossRef
Google scholar
|
[14] |
Hu M, Li L, Li J.
CrossRef
Google scholar
|
[15] |
Wang Y, Zhou Q, Zhu Y.
CrossRef
Google scholar
|
[16] |
Wu C, Zhang Q, Liu G.
|
[17] |
JanP E, Liang H C, ChengR W, et al. Molecular design strategy for meta-substituted aromatic organic halides in zero-lead-release halide perovskites with efficient waterproof light emission. Advanced Functional Materials, 2024, 2408323
|
[18] |
He J, Hu X, Liu Z.
CrossRef
Google scholar
|
[19] |
Lim E L, Hagfeldt A, Bi D. Toward highly efficient and stable Sn2+ and mixed Pb2+/Sn2+ based halide perovskite solar cells through device engineering. Energy & Environmental Science, 2021, 14(6): 3256–3300
|
[20] |
Priyadarshini P, Senapati S, Naik R. Lead-free organic inorganic hybrid halide perovskites: An emerging candidate for bifunctional applications. Renewable & Sustainable Energy Reviews, 2023, 186: 113649
|
[21] |
Shai X, Zuo L, Sun P.
CrossRef
Google scholar
|
[22] |
Tang Y, Mak C H, Zhang J.
|
[23] |
Li M, Xu S, Wu L.
CrossRef
Google scholar
|
[24] |
Duan X, Jia H, Cao T.
CrossRef
Google scholar
|
[25] |
Paternò G M, Mishra N, Barker A J.
|
[26] |
Zhu Y, Wang F, Wang J.
CrossRef
Google scholar
|
[27] |
Belousov A S, Parkhacheva A A, Markov A N.
CrossRef
Google scholar
|
[28] |
Tang M, Ao Y, Wang C.
CrossRef
Google scholar
|
[29] |
Cheng Y, Chen J, Wang P.
CrossRef
Google scholar
|
[30] |
Jiang L, Du H, Li L.
CrossRef
Google scholar
|
[31] |
Zhang L J, Li S, Liu B K.
CrossRef
Google scholar
|
[32] |
Jiang X, Ding Y, Zheng S.
CrossRef
Google scholar
|
[33] |
Li X, Xu A, Fan H.
CrossRef
Google scholar
|
[34] |
Shi A, Sun D, Zhang X.
CrossRef
Google scholar
|
[35] |
Sarkar A, Acharyya P, Sasmal R.
CrossRef
Google scholar
|
[36] |
Feng Y X, Dong G X, Su K.
CrossRef
Google scholar
|
[37] |
Wang J, Li Y, Ma L.
CrossRef
Google scholar
|
[38] |
Aldrees A, Khan H, Alzahrani A.
CrossRef
Google scholar
|
[39] |
ZhuB, HongX, TangL, et al. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure. Acta Physico-Chimica Sinica, 2021, 38(7): 2111008 (in Chinese)
|
[40] |
Ghosh B, Chakraborty S, Wei H.
CrossRef
Google scholar
|
[41] |
Wu F, Shi Z, Zhan K.
CrossRef
Google scholar
|
[42] |
Ikake H, Hara S, Shimizu S. Skillful control of dispersion and 3D network structures: Advances in functional organic-inorganic nano-hybrid materials prepared using the sol-gel method. Polymers, 2022, 14(16): 3247
CrossRef
Google scholar
|
[43] |
Li L, Ye G, Luo T.
CrossRef
Google scholar
|
[44] |
Wei Z, Wang W, Li W.
CrossRef
Google scholar
|
[45] |
Xu J, Chong M, Li W.
|
[46] |
CaoS, ZhongB, BieC, et al. Insights into photocatalytic mechanism of H2 production integrated with organic transformation over WO3/Zn0.5Cd0.5S S-scheme heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016 (in Chinese)
|
[47] |
Zhao D, Wang Y, Dong C L.
CrossRef
Google scholar
|
[48] |
Su J, Feng X, Sloppy J D.
|
[49] |
Zhang J, Zhang P, Wang T.
CrossRef
Google scholar
|
[50] |
McCall K M, Stoumpos C C, Kontsevoi O Y.
CrossRef
Google scholar
|
[51] |
Zhang L, Liu C, Wang L.
CrossRef
Google scholar
|
[52] |
Li Y Y, Wu Q N, Bu Q J.
CrossRef
Google scholar
|
[53] |
Ding Y, Cao Y Y, Chen D.
CrossRef
Google scholar
|
[54] |
Chou J C, Lin S H, Lai T Y.
CrossRef
Google scholar
|
[55] |
Balducci L, Darjazi H, Gonzalo E.
|
/
〈 |
|
〉 |