Mar 2009, Volume 3 Issue 1

  • Select all
    Peter A. WILDERER

    Life, in combination with solar radiation and abiotic processes, is most probably the reason why liquid water has existed on Earth for over billions of years, and the global mean temperature has remained in a life-enabling range. Efforts to limit or even reverse global warming must be derived from the knowledge of the Earth’s complex life-support system. In this context, the balance between liquid and gaseous water plays a crucial role, and water management becomes an important field of innovation and action, globally, on the scale of watersheds but also on the very local level. Cascading use, reuse, and temporary storage of water in urban settings must be considered to limit over-extraction of water from natural resources, and to maintain the life supporting function of ecosystems. At the same time, public health requirements, cost efficiency, and reliability demands are to be met.

    Yi QIAN
    Xianbing LIU, Can WANG

    The increasing volume of CO2 embodiment in international trade adds a layer of complexity to environmental policies and has raised arguments on the traditional production based responsibility for CO2 emissions. In order to help understand the quantity of CO2 embodiment in trade and its policy implications, this paper gives observations to recently emerging literatures that quantitatively discuss CO2 embodiment in trade. The analytical approaches share the principle of using input and output modeling but vary dramatically in study boundary and estimation accuracy. The calculations can be roughly categorized into three types: direct quantification of CO2 embodiments in multiregional trade, direct quantification of CO2 embodiment in bilateral trade, and indirect analysis by comparing the scenarios with or without trade. The practical estimations strongly rely on trade partner selection and data availability. An obvious imbalance of net CO2 embodiment in the commodity trade between major developed countries and developing economies as a whole was confirmed by these literatures. Carbon taxes and other possible limitations on CO2 emissions have been addressed. The consistency across the calculations could be enhanced by systematic analyses in more detail to convince the international community to take binding commitments for the reduction of global CO2 emissions.

    Wei WANG, Yuxiang LUO, Zhou DENG

    Landfill gas (LFG) utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study. Pressure swing adsorption technology was used in LFG purification, and laboratory experiment, pilot-scale test, and on-site demonstration were carried out in Shenzhen, China. In the laboratory experiment, A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents. The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min, respectively, under which the product generation rate was 4.5 m3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel (GB18047-2000), when the air concentration in feed gas was under 10.96%. The demonstration project was composed of a collection system, production system, and utilization system. The drive performance, environmental protection performance, and economic feasibility of the product gas – as alternative fuel in passenger car, truck, and bulldozer – were tested, showing the feasibility technology for LFG utilization.

  • Research article
    Xiaowen ZHANG, Weili DAI, Shuangfeng YIN, Shenglian LUO, Chak-Tong AU

    In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new applications of organobismuth compounds, cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f]1,5 azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the maximum turnover frequency was up to 10740 h-1 at 120°C and 3 MPa CO2 pressure when tetrabutylammonium iodide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity, demonstrating a potential in industrial application.

    Lu LI, Shuguang XIE, Hui ZHANG, Donghui WEN

    In this study two types of biological contact oxidation processes (BCOP), a step-feed (SBCOP) unit and an inter-recycle (IBCOP) unit, were designed to investigate the treatment of heavily polluted river water. The Daqing River, which is the largest pollutant contributor to the Dianchi Lake, one of the most eutrophic freshwater lakes in China, was taken for the case study. It was found that the SBCOP had higher adaptability and better performance in the reduction of COD, TN, and TP, which made it applicable for the treatment of polluted river water entering the Dianchi Lake. Nitrification rate was observed to be greatly affected by the influent temperature. During each season, the nitrification in the SBCOP was higher than that in the IBCOP. TN removal efficiency in the SBCOP was higher than that in the IBCOP during the winter and spring but poorer during the summer, possibly due to the inhibition of denitrification by higher dissolved oxygen level in the summer. Moreover, symbiotic algae-bacteria growth may be conducive to the removal of pollutants.

  • Research article
    Weihao ZHANG, Fuqing XU, Wei HE, Xing ZHENG, Chen YANG

    Based on common phenomena of biochemical interaction between plants and microorganisms, the inhibitive effects of three common terrestrial compositae plants, namely Artemisia lavandulaefolia DC., Conyza canadensis (L.) Cronq., and Kalimeris indica (L.) Sch.-Bip. on the blue algae Microcystis aeruginosa was studied. Live compositae plants are co-cultivated with algae in two different inoculation doses for 10 days in 5-pools incubators, in order to exclude the influence of bacteria and nutrients. The results show that Artemisia lavandulaefolia DC has the most inhibitive potential among the three plants as evidenced by the most drastic decrease in optical density (OD680) of the algae. The inhibition rate is 93.3% (with initial inoculation dose of 2.0 × 106 Cells/mL) and 89.3% (with initial inoculation dose of 4.0 × 106 Cells/mL) respectively on the 10th day of cultivation. The average inhibition rate during the later half of the experiment is 0.76 (with initial inoculation dose of 2.0 × 106 Cells/mL) and 0.71 (with initial inoculation dose of 4.0 × 106 Cells/mL), respectively. Logistic model analysis shows that compositae plants such as A. lavandulaefolia DC. causes the reduction of the habitat's carrying capacity of algae. ANOVA analysis is used to determine the similarity and differences between every experimental group and an average inhibitive rate model is used to evaluate the inhibition effects. The results show that A. lavandulaefolia DC., which grow well in the aquatic environment, may have a great potential in controlling algae bloom in eutrophic water.

    Jin GUO, Jun MA

    Hydrophobic organic contaminants (HOCs)—pyrene, and natural organic matters (NOM) from different sources were taken as the test compounds to investigate the impact of physicochemical characteristics of NOM on HOCs’ partition to the NOM in this study. The effects of solution property, NOM characteristics, and modification by ozone preoxidation on pyrene partition to NOM were systematically evaluated. According to the fluorescence quenching method, the partition coefficient Koc of pyrene to NOM was calculated, which was found to have a great relationship with the aromatic structures and hydrophobic functional groups of the NOM. The NOM characteristic modification corresponding to solution property could influence the interactions between the NOM and pyrene. Preozonation could destroy the aromatic or hydrophobic structures of the NOM and decrease Koc of pyrene.

    Shunjiang LI, Wei LI, Xia HU, Linsheng YANG, Ruodeng XIRAO

    In order to investigate the correlation between the prevalence of Kashin-Back disease (KBD) and Se concentrations, natural soil samples and cultivated soil samples were collected from southeastern Tibet, China; and the soil Se concentrations were measured by atomic fluorescent spectrophotometer. It was found that the mean Se concentrations of natural soil samples in KBD areas, from the first layer to the third layer, were 0.17 mg/kg, 0.11 mg/kg, and 0.10 mg/kg, respectively, and in non-disease areas were 0.21 mg/kg, 0.24 mg/kg, and 0.13 mg/kg, respectively. The mean Se concentrations of cultivated soil samples were 0.10 mg/kg in KBD areas and 0.23 mg/kg in non-disease areas, respectively. Soil Se concentrations in KBD areas were lower than that in non-disease areas, and the mean concentrations of soil Se in Tibet were lower than the average of China (0.29 mg/kg). Therefore , there is a close relationship between soil Se concentrations and KBD in Tibet. More studies should be concentrated on the impacts of Se deficiency in soils and its relationship with Se concentrations in food-grain and the human body in Tibet areas.

  • Research Article
    Jianqiu LIU, Yaobin ZHANG, Hong CHEN, Yazhi ZHAO, Xie QUAN

    In order to investigate the contribution of various black carbon (BC) contents to nonlinearity of sorption and desorption isotherms for acetochlor on sediment, equilibrium sorption and desorption isotherms were determined to measure sorption and desorption of acetochlor in sediment amended with various amounts of BC. In this paper, two types of BC referred to as BC400 and BC500 were prepared at 400°C and 500°C, respectively. Higher preparation temperature facilitated the formation of micropores on BC to enhance its sorption capacity. Increase of the BC content obviously increased the sorption amount and reduced the desorption amount for acetochlor. When the BC500 contents in total organic carbon (TOC) increased from 0 to 60%, Freundlich sorption coefficient (Kf) increased from 4.07 to 35.74, and desorption hysteresis became gradually obvious. When the content of BC in TOC was lower than 23%, the sorption isotherm had a significant linear correlation (p = 0.05). In case of desorption, a significant nonlinear change could be observed when the content of BC was up to 13%. Increase of BC content in the sediment would result in shifting the sorption-desorption isotherms from linearity to nonlinearity, which indicated that contribution of BC to nonlinear adsorption fraction became gradually remarkable.

    Bingbing XU, Zhonglin CHEN, Fei QI, Jimin SHEN, Fengchang WU

    In order to provide basic data for practical application,photodegradation experiment of N-nitrosodimethylamine (NDMA) in aqueous solution was carried out with a low-pressure Hg lamp. Effects of the initial concentration of NDMA, solution pH, dissolved oxygen, and the presence of humic acid on NDMA photodegradation were investigated. NDMA at various initial concentrations selected in this study was almost completely photodegraded by UV irradiation within 20 min, except that at 1.07 mmol/L, NDMA could be photodegraded almost completely in the acidic and neutral solutions, while the removal efficiency decreased remarkably in the alkaline solution. Dissolved oxygen enhanced the NDMA photodegradation, and the presence of humic acid inhibited the degradation of NDMA. Depending on the initial concentration of NDMA, NDMA photodegradation by UV obeyed the pseudo-first-order kinetics. Dimethylamine, nitrite, and nitrate were detected as the photodegradation products of NDMA. 1O2 was found to be the reactive oxygen species present in the NDMA photodegradation process by UV, based on the inhibiting experiments using tert-butanol and sodium azide.

    Sarper SARP, Sungyun LEE, Noeon PARK, Nguyen Thi HANH, Jaeweon CHO

    For effective wastewater reclamation and water recovery, the treatment of natural and effluent organic matters (NOM and EfOM), toxic anions, and micropollutants was considered in this work. Two different NOM (humic acid of the Suwannee River, and NOM of US and Youngsan River, Korea), and one EfOM from the Damyang wastewater treatment plant, Korea, were selected for investigating the removal efficiencies of tight nanofiltration (NF) and ultrafiltration (UF) membranes with different properties. Nitrate, bromate, and perchlorate were selected as target toxic anions due to their well known high toxicities. Tri-(2-chloroethyl)-phosphate (TCEP), oxybenzone, and caffeine, due to their different Kow and pKa values, were selected as target micropollutants. As expected, the NF membranes provided high removal efficiencies in terms of all the tested contaminants, and the UF membrane provided fairly high removal efficiencies for anions (except for nitrate) and the relatively hydrophobic micropollutant, oxybenzon

    Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

    The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, PO43-, and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A2/O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3- was 40 mg/L.

  • Research Article
    Hongtao WANG, Huayong WU

    The purpose of this study is to present a library of analytical solutions for the three-dimensional contaminant transport in uniform flow field in porous media with the first-order decay, linear sorption, and zero-order production. The library is constructed using Green's function method (GFM) in combination with available solutions. The library covers a wide range of solutions for various conditions. The aquifer can be vertically finite, semi-infinitive or infinitive, and laterally semi-infinitive or infinitive. The geometry of the sources can be of point, line, plane or volumetric body; and the source release can be continuous, instantaneous, or by following a given function over time. Dimensionless forms of the solutions are also proposed. A computer code FlowCAS is developed to calculate the solutions. Calculated results demonstrate the correctness of the presented solutions. The library is widely applicable to solve contaminant transport problems of one- or multiple- dimensions in uniform flow fields.