A mathematical theory of time-dependent dislocation mechanics of unrestricted geometric and material nonlinearity is reviewed. Within a “small deformation” setting, a suite of simplified and interesting models consisting of a nonlocal Ginzburg Landau equation, a nonlocal level set equation, and a nonlocal generalized Burgers equation is derived. In the finite deformation setting, it is shown that an additive decomposition of the total velocity gradient into elastic and plastic parts emerges naturally from a micromechanical starting point that involves no notion of plastic deformation but only the elastic distortion, material velocity, dislocation density and the dislocation velocity. Moreover, a plastic spin tensor emerges naturally as well.
In this article, we discuss a numerical method for the computation of the minimal and maximal solutions of a steady scalar Eikonal equation. This method relies on a penalty treatment of the nonlinearity, a biharmonic regularization of the resulting variational problem, and the time discretization by operator-splitting of an initial value problem associated with the Euler-Lagrange equations of the regularized variational problem. A low-order finite element discretization is advocated since it is well-suited to the low regularity of the solutions. Numerical experiments show that the method sketched above can capture efficiently the extremal solutions of various two-dimensional test problems and that it has also the ability of handling easily domains with curved boundaries.
The steady Eikonal equation is a prototypical first-order fully nonlinear equation. A numerical method based on elliptic solvers is presented here to solve two different kinds of steady Eikonal equations and compute solutions, which are maximal and minimal in the variational sense. The approach in this paper relies on a variational argument involving penalty, a biharmonic regularization, and an operator-splitting-based time-discretization scheme for the solution of an associated initial-value problem. This approach allows the decoupling of the nonlinearities and differential operators.
Numerical experiments are performed to validate this approach and investigate its convergence properties from a numerical viewpoint.
The author considers two classical problems in optimal design consisting in maximizing or minimizing the energy corresponding to the mixture of two isotropic materials or two-composite material. These results refer to the smoothness of the optimal solutions. They also apply to the minimization of the first eigenvalue.
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.
The authors study a linear inverse problem with a biological interpretation, which is modelled by a Fredholm integral equation of the first kind, where the kernel is represented by step functions. Based on different assumptions, identifiability, stability and reconstruction results are obtained.
This paper deals with a scalar conservation law in 1-D space dimension, and in particular, the focus is on the stability analysis for such an equation. The problem of feedback stabilization under proportional-integral-derivative (PID for short) boundary control is addressed. In the proportional-integral (PI for short) controller case, by spectral analysis, the authors provide a complete characterization of the set of stabilizing feedback parameters, and determine the corresponding time delay stability interval. Moreover, the stability of the equilibrium is discussed by Lyapunov function techniques, and by this approach the exponential stability when a damping term is added to the classical PI controller scheme is proved. Also, based on Pontryagin results on stability for quasipolynomials, it is shown that the closed-loop system subject to PID control is always unstable.
This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.
Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods (in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality. In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally, a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced.
This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splines (RPS for short). As an approximation space of the elliptic problem, RPS is known to recover the quasi-optimal convergence rate and attain the quasi-optimal localization property. The authors lay out the formulation of the RPS based domain decomposition preconditioner, and numerically verify the performance boost of this method through several examples.
A two-phase elasto-plastic material is investigated. It is shown that, if the interface is modeled as the limit of a vanishing layer of a third material, then the resulting two-phase material will exhibit a smaller interfacial dissipation than that of a pure two-phase model.
Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.
Among the various simplifications which have been proposed, the surface pressure model leads to a hierarchy of simpler models including one that involves only the pressure. The model exhibits fundamental frequencies which can be computed and compared with the pulse. Yet unconditionally stable time discretizations can be constructed by combining implicit time schemes with Galerkin-characteristic discretization of the convection terms in the Navier-Stokes equations. Such problems with prescribed pressure on the walls will be shown to be efficient and accurate as an approximation of the full fluid structure interaction problem.
An optimal design method for two materials based on small amplitude homogenization is presented. The method allows to use quite general objective functions at the price that the two materials should have small contrasts in their relevant physical parameters. The following two applications are shown: Stress constrained compliance minimization and defect location in elastic bodies.
It is known that the Boltzmann equation has close relation to the classical systems in fluid dynamics. However, it provides more information on the microscopic level so that some phenomena, like the thermal creep flow, can not be modeled by the classical systems of fluid dynamics, such as the Euler equations. The author gives an example to show this phenomenon rigorously in a special setting. This paper is completely based on the author’s recent work, jointly with Wang and Yang.
The propagation of unstable interfaces is at the origin of remarkable patterns that are observed in various areas of science as chemical reactions, phase transitions, and growth of bacterial colonies. Since a scalar equation generates usually stable waves, the simplest mathematical description relies on two-by-two reaction-diffusion systems. The authors’ interest is the extension of the Fisher/KPP equation to a two-species reaction which represents reactant concentration and temperature when used for flame propagation, and bacterial population and nutrient concentration when used in biology.
The authors study circumstances in which instabilities can occur and in particular the effect of dimension. It is observed numerically that spherical waves can be unstable depending on the coefficients. A simpler mathematical framework is to study transversal instability, which means a one-dimensional wave propagating in two space dimensions. Then, explicit analytical formulas give explicitely the range of paramaters for instability.
The author shows the existence of long-time averages to turbulent solutions of the Navier-Stokes equations and determines the equations satisfied by them, involving a Reynolds stress that is shown to be dissipative.