Feedback stabilization for a scalar conservation law with PID boundary control

Jean Michel Coron , Simona Oana Tamasoiu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 763 -776.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 763 -776. DOI: 10.1007/s11401-015-0975-8
Article

Feedback stabilization for a scalar conservation law with PID boundary control

Author information +
History +
PDF

Abstract

This paper deals with a scalar conservation law in 1-D space dimension, and in particular, the focus is on the stability analysis for such an equation. The problem of feedback stabilization under proportional-integral-derivative (PID for short) boundary control is addressed. In the proportional-integral (PI for short) controller case, by spectral analysis, the authors provide a complete characterization of the set of stabilizing feedback parameters, and determine the corresponding time delay stability interval. Moreover, the stability of the equilibrium is discussed by Lyapunov function techniques, and by this approach the exponential stability when a damping term is added to the classical PI controller scheme is proved. Also, based on Pontryagin results on stability for quasipolynomials, it is shown that the closed-loop system subject to PID control is always unstable.

Keywords

Boundary feedback / PID controllers / Linear scalar conservation law

Cite this article

Download citation ▾
Jean Michel Coron, Simona Oana Tamasoiu. Feedback stabilization for a scalar conservation law with PID boundary control. Chinese Annals of Mathematics, Series B, 2015, 36(5): 763-776 DOI:10.1007/s11401-015-0975-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Åström K. J., Hägglund T.. PID Controllers: Theory, Design, and Tunning, Instrument Society of America, 1995

[2]

Bastin G., Coron J. M.. On boundary feedback stabilization of non-uniform linear 2 × 2 hyperbolic systems over a bounded interval. Systems Control Lett., 2011, 60(11): 900-906

[3]

Cooke K. L., Van den Driessche P.. On zeroes of some transcendental equations. Funkcial Ekvac, 1986, 29(1): 77-90

[4]

Coron J. M.. Control and nonlinearity, Mathematical Surveys and Monographs, 2007

[5]

Coron J. M., Bastin G., d’Andréa-Novel B.. Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim., 2008, 47(3): 1460-1498

[6]

Coron J. M., d’Andréa-Novel B., Bastin G.. A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control, 2007, 52(1): 2-11

[7]

Coron J. M., Wang Z. Q.. Output feedback stabilization for a scalar conservation law with a nonlocal velocity. SIAM J. Math. Anal., 2013, 45(5): 2646-2665

[8]

Dick M., Gugat M., Leugering G.. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media, 2010, 5(4): 691-709

[9]

Dos Santos V., Bastin G., Coron J. M., d’Andréa-Novel B.. Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments. Automatica J. IFAC, 2008, 44(5): 1310-1318

[10]

Greenberg J., Li T. T.. The effect of boundary damping for the quasilinear wave equation. J. Differential Equations, 1984, 52(1): 66-75

[11]

Hale J. K., Verduyn Lunel S. M.. Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information, 2002, 19: 5-23

[12]

Li, T. T., Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics, Vol. 32, Masson, Paris, 1994.

[13]

Lichtner M.. Spectral mapping theorem for linear hyperbolic systems. Proc. Amer. Math. Soc., 2008, 136(6): 2091-2101

[14]

Pontryagin, Lev Semionovitch, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. (2), 1, 1955, 95–110.

[15]

Prieur C., Winkin J., Bastin G.. Robust boundary control of systems of conservation laws. Math. Control Signals Systems, 2008, 20(2): 173-197

[16]

Renardy M.. On the linear stability of hyperbolic PDEs and viscoelastic flows. Z. Angew. Math. Phys., 1994, 45(6): 854-865

[17]

Silva G. J., Datta A., Bhattacharyya S. P.. PID controllers for time-delay systems, 2005

[18]

Walton K., Marshall J. E.. Direct method for TDS stability analysis. Proceedings of IEEE, 1987, 134: 101-107

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/