Weak continuity and compactness for nonlinear partial differential equations

Gui-Qiang G. Chen

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 715 -736.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 715 -736. DOI: 10.1007/s11401-015-0973-x
Article

Weak continuity and compactness for nonlinear partial differential equations

Author information +
History +
PDF

Abstract

This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.

Keywords

Weak continuity / Compensated compactness / Nonlinear partial differential equations / Euler equations / Gauss-Codazzi-Ricci system

Cite this article

Download citation ▾
Gui-Qiang G. Chen. Weak continuity and compactness for nonlinear partial differential equations. Chinese Annals of Mathematics, Series B, 2015, 36(5): 715-736 DOI:10.1007/s11401-015-0973-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alberti G., Müller S.. A new approach to variational problems with multiple scales. Comm. Pure Appl. Math., 2001, 54: 761-825

[2]

Ball J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 1977, 63: 337-403

[3]

Ball J. M.. A version of the fundamental theorem for Young measures. Lecture Notes in Phys., 1989, 344: 207-215

[4]

Bianchini S., Bressan A.. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math., 2005, 161(2): 223-342

[5]

Bressan A.. Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, 2000, Oxford: Oxford University Press

[6]

Briane M., Casado-Díaz J., Murat F.. The div-curl lemma “trente ans aprs”: An extension and an application to the G-convergence of unbounded monotone operators. J. Math. Pures Appl., 2009, 91(9): 476-494

[7]

Bryant R. L., Griffiths P. A., Yang D.. Characteristics and existence of isometric embeddings. Duke Math. J., 1983, 50: 893-994

[8]

Chen G. Q.. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math. Sci., 1986, 6B: 75-120

[9]

Chen G. Q.. Remarks on spherically symmetric solutions of the compressible Euler equations. Proc. Royal Soc. Edinburgh Ser. A, 1997, 127: 243-259

[10]

Chen G. Q.. Euler Equations and Related Hyperbolic Conservation Laws, Handbook of Differential Equations: Evolutionary Differential Equations, 2005, 2: 1-104

[11]

Chen G. Q., Christoforou C.. Solutions for a nonlocal conservation law with fading memory. Proc. Amer. Math. Soc., 2007, 135(12): 3905-3915

[12]

Chen G. Q., Dafermos C. M., Slemrod M., Wang D.. On two-dimensional sonic-subsonic flow. Commun. Math. Phys., 2007, 271: 635-647

[13]

Chen G. Q., Huang F. M., Wang T. Y.. Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations. Arch. Rational Mech. Anal., 2015

[14]

Chen G. Q., LeFloch P. G.. Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal., 2000, 153: 221-259

[15]

Chen G. Q., LeFloch P. G.. Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal., 2003, 166: 81-98

[16]

Chen G. Q., Li T. H.. Well-posedness for two-diemnsonal steady supersonic Euler flows past a Lipschitz wedge. J. Diff. Eqs, 2008, 244: 1521-1550

[17]

Chen G. Q., Li B. H., Li T. H.. Entropy solutions in L for the Euler equations in nonlinear elastodynamics and related equations. Arch. Rational Mech. Anal., 2003, 170: 331-357

[18]

Chen G. Q., Lu Y. G.. The study on application way of the compensated compactness theory. Chinese Sci. Bull., 1988, 33: 641-644

[19]

Chen G. Q., Perepelitsa M.. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Comm. Pure Appl. Math., 2010, 63: 1469-1504

[20]

Chen G. Q., Perepelitsa M.. Shallow water equations: Viscous solutions and inviscid limit. Z. Angew. Math. Phys., 2012, 63: 1067-1084

[21]

Chen G. Q., Perepelitsa M.. Vanishing viscosity solutions of the compressible Euler equations with spherically symmetry and large initial data. Comm. Math. Phys., 2015, 338: 771-800

[22]

Chen G. Q., Slemrod M., Wang D.. Vanishing viscosity method for transonic flow. Arch. Rational Mech. Anal., 2008, 189: 159-188

[23]

Chen G. Q., Slemrod M., Wang D.. Isometric immersions and compensated compactness. Comm. Math. Phys., 2010, 294: 411-437

[24]

Chen G. Q., Slemrod M., Wang D.. Weak continuity of the Gauss-Codazzi-Ricci system for isometric embedding. Proc. Amer. Math. Soc., 2010, 138: 1843-1852

[25]

Chen G. Q., Zhang Y. Q., Zhu D. W.. Existence and stability of supersonic Euler flows past Lipschitz wedges. Arch. Rational Mech. Anal., 2006, 181: 261-310

[26]

Courant R., Friedrichs K. O.. Supersonic Flow and Shock Waves, 1948, New York: Springer-Verlag

[27]

Dafermos C. M.. Solutions in L for a conservation law with memory, Analyse Mathématique et Applications, 1988 117-128

[28]

Dafermos C. M.. Hyperbolic Conservation Laws in Continuum Physics, 2010, Berlin: Springer-Verlag

[29]

De Lellis C., Székelyhidi J.r. L.. On admissibility criteria for weak solutions of the Euler equations. Arch. Rational Mech. Anal., 2010, 195: 225-260

[30]

De Lellis C., Székelyhidi J.r. L.. The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc, 2012, 49: 347-375

[31]

Ding X., Chen G. Q., Luo P.. Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)–(II). Acta Math. Sci, 1985, 5B: 483-500

[32]

Ding X., Chen G. Q., Luo P.. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Comm. Math. Phys., 1989, 121: 63-84

[33]

DiPerna R. J.. Decay of solutions of hyperbolic systems of conservation laws with a convex extension. Arch. Rational Mech. Anal., 1977, 64: 1-46

[34]

DiPerna R. J.. Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys., 1983, 91: 1-30

[35]

DiPerna R. J.. Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal., 1983, 82: 27-70

[36]

DiPerna R. J.. Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal., 1985, 88: 223-270

[37]

DiPerna R. J.. Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc., 1985, 292: 383-420

[38]

Efimov N. V.. The impossibility in Euclideam 3-space of a complete regular surface with a negative upper bound of the Gaussian curvature. Dokl. Akad. Nauk SSSR (N.S.), 1963, 150: 1206-1209

[39]

Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS-RCSM, Vol. 74, A. M. S., Providence, RI, 1990.

[40]

Gilbarg D.. The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math., 1951, 73: 256-274

[41]

Glimm J.. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 1965, 18: 697-715

[42]

Glimm, J. and Lax, P. D., Decay of solutions of systems of hyperbolic conservation laws, Bull. Amer. Math. Soc., 73(105), 1967.

[43]

Gromov M.. Partial Differential Relations, 1986, Berlin: Springer-Verlag

[44]

Guderley G.. Starke kugelige und zylindrische Verdichtungsstosse inder Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung, 1942, 19(9): 302-311

[45]

Guès C. M. I. O., Métivier G., Williams M., Zumbrun K.. Navier-Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup., 2006, 39(4): 75-175

[46]

Günther M., Zum Einbettungssatz von J.. Nash [On the embedding theorem of J. Nash]. Math. Nachr., 1989, 144: 165-187

[47]

Han Q., Hong J. X.. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, 2006

[48]

Hoff D.. Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states. Z. Angew. Math. Phys., 1998, 49: 774-785

[49]

Hoff D., Liu T. P.. The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data. Indiana Univ. Math. J., 1989, 38: 861-915

[50]

Holden H., Risebro N. H.. Front Tracking for Hyperbolic Conservation Laws, 2011, New York: Springer-Verlag

[51]

Hopf E.. The partial differential equation u t + uu x = u xx. Comm. Pure Appl. Math., 1950, 3: 201-230

[52]

Huang F., Wang Z.. Convergence of viscosity solutions for isothermal gas dynamics. SIAM J. Math. Anal., 2002, 34: 595-610

[53]

Janet M.. Sur la possibilité de plonger un espace Riemannian donné dans un espace Euclidien. Ann. Soc. Pol. Math., 1926, 5: 38-43

[54]

Kanel I.. On a model system of equations for one-dimensional gas motion. Differ. Uravn., 1968, 4: 721-734

[55]

Kruzkov S. N.. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 1970, 81(123): 228-255

[56]

Lax, P. D., Shock wave and entropy, Co3–634.

[57]

Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS Regional Conference Series in Mathematics, 11, SIAM, Philadelphia, 1973.

[58]

LeFloch P. G.. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, 2002, Basel: Birkhäuser-Verlag

[59]

LeFloch P. G., Shelukhin V.. Symmetries and local solvability of the isothermal gas dynamics equations. Arch. Rational Mech. Anal., 2005, 175: 389-430

[60]

LeFloch P. G., Westdickenberg M.. Finite energy solutions to the isentropic Euler equations with geometric effects. J. Math. Pures Appl., 2007, 88: 386-429

[61]

Liu T. P.. Admissible solutions of hyperbolic conservation laws. Mem. Amer. Math. Soc., 1981, 30: 240

[62]

Liu T. P., Yang T.. Well-posedness theory for hyperbolic conservation laws. Comm. Pure Appl. Math., 1999, 52: 1553-1586

[63]

Lions P. L., Perthame B., Souganidis P. E.. Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math., 1996, 49: 599-638

[64]

Lions P. L., Perthame B., Tadmor E.. Kinetic formulation of the isentropic gas dynamics and psystems. Comm. Math. Phys., 1994, 163: 415-431

[65]

Mardare S.. The fundamental theorem of surface theory for surfaces with little regularity. J. Elasticity, 2003, 73: 251-290

[66]

Mardare S.. On Pfaff systems with Lp coefficients and their applications in differential geometry. J. Math. Pure Appl., 2005, 84: 1659-1692

[67]

Morawetz C. S.. On a weak solution for a transonic flow problem. Comm. Pure Appl. Math., 1985, 38: 797-818

[68]

Morawetz C. S.. An alternative proof of DiPerna’s theorem. Comm. Pure Appl. Math., 1991, 44: 1081-1090

[69]

Morawetz C. S.. On steady transonic flow by compensated compactness. Methods Appl. Anal., 1995, 2: 257-268

[70]

Murat F.. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 1978, 5: 489-507

[71]

Murat F.. Compacité par compensation, II, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), 1979 245-256

[72]

Murat F.. L’injection du cône positif de H −1 dans W −1,q est compacte pour tout q < 2. J. Math. Pures Appl., 1981, 60(9): 309-322

[73]

Murat F.. Compacité par compensation: Condition nécessaire et suffisante de continuité faible sous une hypothse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci, 1981, 8(1): 69-102

[74]

Murat, F., A survey on compensated compactness, Contributions to Modern Calculus of Variations (Bologna, 1985), Pitman Res. Notes Math. Ser., 148, Longman Sci. Tech., Harlow, 1987, 145–183.

[75]

Nash J.. The imbedding problem for Riemannian manifolds. Ann. Math., 1956, 63(2): 20-63

[76]

Oleinik O. A.. Discontinuous solutions of non-linear differential equations. Usp. Mat. Nauk., 1957, 12: 3-73

[77]

Perthame B., Tzavaras A. E.. Kinetic formulation for systems of two conservation laws and elastodynamicsvArch. Rational Mech. Anal, 2000, 155: 1-48

[78]

Rauch J.. BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Comm. Math. Phys., 1986, 106: 481-484

[79]

Rosseland S.. The Pulsation Theory of Variable Stars, 1964, New York: Dover Publications

[80]

Schonbek M. E.. Convergence of solutions to nonlinear dispersive equations. Comm. Partial Diff. Eqs., 1982, 7: 959-1000

[81]

Serre D.. La compacité par compensation pour les systèmes non linéaires de deux equations a une dimension d’espace. J. Math. Pures Appl., 1987, 65: 423-468

[82]

Serre D., Shearer J. W.. Convergence with physical viscosity for nonlinear elasticity, 1994

[83]

Smoller J.. Shock Waves and Reaction-Diffusion Equations, 1994, New York: Springer-Verlag

[84]

Tadmor E., Rascle M., Bagnerini P.. Compensated compactness for 2D conservation laws. J. Hyper. Diff. Eqs., 2005, 2: 697-712

[85]

Tartar, L., Compensated compactness and applications to partial differential equations, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Herriot-Watt Symposium, Vol. 4, R. J. Knops (ed.), Pitman Press, Boston, 1979.

[86]

Tartar L.. The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations (Oxford, 1982). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 1983 263-285

[87]

Tartar L.. Compacité par compensation: Résultats et perspectives, Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar (Paris, 1981/1982), 1983

[88]

Tartar L.. Oscillations in nonlinear partial differential equations: Compensated compactness and homogenization, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N. M., 1984). Lectures in Appl. Math., 1986

[89]

Tartar L.. Discontinuities and oscillations, Directions in Partial Differential Equations (Madison, 1985). Publ. Math. Res. Center Univ. Wisconsin, 1987 211-233

[90]

Tartar L.. From Hyperbolic Systems to Kinetic Theory: A Personalized Quest, Lecture Notes of the Unione Matematica Italiana, 2008, Berlin: Springer-Verlag

[91]

Tartar L.. The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 2009, Berlin: Springer-Verlag

[92]

Vol’pert A. I.. Spaces BVand quasilinear equations. Mat. Sb. (N.S.), 1967, 73(115): 255

[93]

Whitham G. B.. Linear and Nonlinear Waves, 1974, New York: John Wiley and Sons

[94]

Yau, S. T., Review of geometry and analysis, Mathematics: Frontiers and Perspectives, International Mathematics Union, V. Arnold, M. Atiyah, P. Lax and B. Mazur (eds.), A. M. S., Providence, RI, 2000, 353–401.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/