The role of a vanishing interfacial layer in perfect elasto-plasticity

Gilles A. Francfort , Alessandro Giacomini

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 813 -828.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 813 -828. DOI: 10.1007/s11401-015-0978-5
Article

The role of a vanishing interfacial layer in perfect elasto-plasticity

Author information +
History +
PDF

Abstract

A two-phase elasto-plastic material is investigated. It is shown that, if the interface is modeled as the limit of a vanishing layer of a third material, then the resulting two-phase material will exhibit a smaller interfacial dissipation than that of a pure two-phase model.

Keywords

Plasticity / Variational Evolutions / Interfaces / Functions of bounded deformation

Cite this article

Download citation ▾
Gilles A. Francfort, Alessandro Giacomini. The role of a vanishing interfacial layer in perfect elasto-plasticity. Chinese Annals of Mathematics, Series B, 2015, 36(5): 813-828 DOI:10.1007/s11401-015-0978-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosio L., Coscia A., Dal Maso G.. Fine properties of functions with bounded deformations. Arch. Rat. Mech. Anal., 1997, 139: 201-238

[2]

Ambrosio L., Fusco N., Pallara D.. Functions of Bounded Variation and Free Discontinuity Problems, 2000, Oxford: Oxford University Press

[3]

Dal Maso G., DeSimone A., Mora M. G.. Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal., 2006, 180(2): 237-291

[4]

Evans L. C., Gariepy R. F.. Measure theory and fine properties of functions, 1992, Boca Raton: CRC Press

[5]

Francfort G. A., Giacomini A.. Small-strain heterogeneous elastoplasticity revisited. Comm. Pure Appl. Math., 2012, 65(9): 1185-1241

[6]

Kohn R. V., Temam R.. Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim., 1983, 10(1): 1-35

[7]

Mainik A., Mielke A.. Dafermos A., Feireisl E.. Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations. Evolution of rate-independent systems, Evolutionary Equations, 2005 461-559

[8]

Solombrino F.. Quasistatic evolution problems for nonhomogeneous elastic plastic materials. J. Convex Anal., 1979, 16(1): 89-119

[9]

Suquet P. M.. Un espace fonctionnel pour les équations de la plasticité. Ann. Fac. Sci. Toulouse Math, 1979, 1(1): 77-87

[10]

Suquet P. M.. Sur les équations de la plasticité: existence et régularité des solutions. J. Mécanique, 1981, 20(1): 3-39

[11]

Temam, R., Problèmes mathématiques en plasticité, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], Vol. 12, Gauthier-Villars, Montrouge, 1983.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/