Transversal instability for the thermodiffusive reaction-diffusion system

Michal Kowalczyk , Benoît Perthame , Nicolas Vauchelet

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 871 -882.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 871 -882. DOI: 10.1007/s11401-015-0981-x
Article

Transversal instability for the thermodiffusive reaction-diffusion system

Author information +
History +
PDF

Abstract

The propagation of unstable interfaces is at the origin of remarkable patterns that are observed in various areas of science as chemical reactions, phase transitions, and growth of bacterial colonies. Since a scalar equation generates usually stable waves, the simplest mathematical description relies on two-by-two reaction-diffusion systems. The authors’ interest is the extension of the Fisher/KPP equation to a two-species reaction which represents reactant concentration and temperature when used for flame propagation, and bacterial population and nutrient concentration when used in biology.

The authors study circumstances in which instabilities can occur and in particular the effect of dimension. It is observed numerically that spherical waves can be unstable depending on the coefficients. A simpler mathematical framework is to study transversal instability, which means a one-dimensional wave propagating in two space dimensions. Then, explicit analytical formulas give explicitely the range of paramaters for instability.

Keywords

Traveling waves / Stability analysis / Reaction-diffusion equation / Thermodiffusive system

Cite this article

Download citation ▾
Michal Kowalczyk, Benoît Perthame, Nicolas Vauchelet. Transversal instability for the thermodiffusive reaction-diffusion system. Chinese Annals of Mathematics, Series B, 2015, 36(5): 871-882 DOI:10.1007/s11401-015-0981-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ben Amar M., Goriely A.. Growth and instability in elastic tissues. J. Mech. Phys. Solid., 2005, 53(10): 2284-2319

[2]

Berestycki H., Nicolaenko B., Scheurer B.. Traveling wave solutions to combustion models and their singular limit. SIAM J. Math. Anal., 1985, 16(6): 1207-1242

[3]

Berestycki H., Terracini S., Wang K. L., Wei J. C.. On entire solutions of an elliptic system modeling phase separation. tAdv. Math., 2013, 243: 102-126

[4]

Billingham J., Needham D. J.. The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates, Permanent form travelling wave. Philos. Trans. Roy. Soc. London Ser., 1991, 334(1633): 1-24

[5]

Chen X., Taniguchi M.. Instability of spherical interfaces in a nonlinear free boundary proble. Adv. Differential Equation., 2000, 5(4–6): 747-772

[6]

Ciarletta P., Foret L., Ben Amar M.. The radial growth phase of malignant melanoma: Multi-phase modellin., numerical simulation and linear stability. J. R. Soc. Interfac., 2011, 8(56): 345-368

[7]

Glangetas L., Roquejoffre J.-M.. Bifurcations of travelling waves in the thermo-diffusive model for flame propagatio. Arch. Rational Mech. Anal., 1996, 134: 341-402

[8]

Golding I., Kozlovsky Y., Cohen I., Ben Jacob E.. Studies of bacterial branching growth using reaction-diffusion models for colonial developmen. Physica., 1998, 260: 510-554

[9]

Hamel F., Ryzhik L.. Traveling fronts for the thermo-diffusive system with arbitrary Lewis number. Arch. Ration. Mech. Anal., 2010, 195(3): 923-952

[10]

Hecht F.. New development in freefem+.. J. Numer. Math., 2012, 20(3–4): 251-265

[11]

Kessler D. A., Levine H.. Fluctuation-induced diffusive instabilitie. Letters to Natur., 1998, 394: 556-558

[12]

Marion M.. Qualitative properties of a nonlinear system for laminar flames without ignition temperatur. Nonlinear Anal., 1985, 9(11): 1269-1292

[13]

Mimura M., Sakaguchi H., Matsushita M.. Reaction diffusion modelling of bacterial colony pattern. Physica., 2000, 282: 283-303

[14]

Perthame B., Quirós F., Vázquez J. L.. The Hele-Shaw asymptotics for mechanical models of tumor growt. ARM., 2014, 212: 93-127

[15]

Sattinger D. H.. On the stability of waves of nonlinear parabolic system. Advances in Math., 1976, 22(3): 312-355

[16]

Sherratt J. A., Chaplain M. A. J.. A new mathematical model for avascular tumour growth. J. Math. Biol., 2001, 43(4): 291-312

[17]

Taniguchi M.. Instability of planar traveling waves in bistable reaction-diffusion system. Discrete Contin. Dyn. Syst. Ser., 2003, 3(1): 21-44

[18]

Taniguchi M., Nishiura Y.. Instability of planar interfaces in reaction-diffusion systems. J. Numer. Math., 1994, 25(1): 99-134

[19]

Volpert, A. I., Volpert, V. A. and Volpert, V. A., Traveling wave solutions of parabolic system, Translations of Mathematical Monographs (translated from the Russian manuscript by James F. Heyda., Vol. 14, A. M. S., Providence, RI, 1994.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/