Some smoothness results for classical problems in optimal design and applications
Juan Casado-Díaz
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 703 -714.
Some smoothness results for classical problems in optimal design and applications
The author considers two classical problems in optimal design consisting in maximizing or minimizing the energy corresponding to the mixture of two isotropic materials or two-composite material. These results refer to the smoothness of the optimal solutions. They also apply to the minimization of the first eigenvalue.
Optimal design / Two-phase material / Non-existence / Relaxation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Casado-Díaz, J., Smoothness properties for the optimal mixture of two isotropic materials, the compliance and eigenvalue problems, SIAM J. Control Optim., to appear. |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Murat, F., H-Convergence, Séminaire d’Analyse Fonctionnelle et Numérique, Université d’Alger, 197, 7–1978; English translation: H-Convergence, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998, 21–43. |
| [16] |
Murat, F. and Tartar L., Calcul des variations et homogénéisation, Les Méthodes de L’homogénéisation: Theorie et Applications en Physique, Eirolles, Paris, 1985, 319–369; English translation: Calculus of variations and homogenization, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998 139–174. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
/
| 〈 |
|
〉 |