Some smoothness results for classical problems in optimal design and applications

Juan Casado-Díaz

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 703 -714.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 703 -714. DOI: 10.1007/s11401-015-0972-y
Article

Some smoothness results for classical problems in optimal design and applications

Author information +
History +
PDF

Abstract

The author considers two classical problems in optimal design consisting in maximizing or minimizing the energy corresponding to the mixture of two isotropic materials or two-composite material. These results refer to the smoothness of the optimal solutions. They also apply to the minimization of the first eigenvalue.

Keywords

Optimal design / Two-phase material / Non-existence / Relaxation

Cite this article

Download citation ▾
Juan Casado-Díaz. Some smoothness results for classical problems in optimal design and applications. Chinese Annals of Mathematics, Series B, 2015, 36(5): 703-714 DOI:10.1007/s11401-015-0972-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allaire G.. Shape Optimization by the Homogenization Method, 2002, New York: Springer-Verlag

[2]

Briane M., Casado-Díaz J.. Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients. J. Differential Equations, 2008, 245: 2038-2054

[3]

Casado-Díaz J., Couce-Calvo J., Martín-Gómez J. D.. Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim., 2008, 43: 1428-1457

[4]

Casado-Díaz, J., Smoothness properties for the optimal mixture of two isotropic materials, the compliance and eigenvalue problems, SIAM J. Control Optim., to appear.

[5]

Casado-Díaz J.. Some smoothness results for the optimal design of a two-composite material which minimizes the energy. Calc. Var. PDE, 2015, 53: 649-673

[6]

Chipot M., Evans L.. Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. Roy. Soc. Edinburgh A, 1986, 102: 291-303

[7]

Franchi B., Serapioni R., Serra Cassano F.. Irregular solutions of linear degenerate elliptic equations. Potential Anal., 1998, 9: 201-216

[8]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 2001, Berlin: Springer-Verlag

[9]

Goodman J., Kohn R. V., Reyna L.. Numerical study of a relaxed variational problem for optimal design. Comput. Methods Appl. Mech. Eng., 1986, 57: 107-127

[10]

Kawohl B., Stara J., Wittum G.. Analysis and numerical studies of a problem of shape design. Arc. Rational Mech. Anal., 1991, 114: 343-363

[11]

Lions J. L.. Some Methods in the Mathematical Analysis of Systems and Their Control, 1981, Beijing: Science Press

[12]

Manfredi J. J.. Weakly monotone functions. J. Geom. Anal., 1994, 4: 393-402

[13]

Murat F.. Un contre-example pour le problème du contrôle dans les coefficients. C. R. A. S. Sci. Paris A, 1971, 273: 708-711

[14]

Murat F.. Théorèmes de non existence pour des problèmes de contrôle dans les coefficients. C. R. A. S. Sci. Paris A, 1972, 274: 395-398

[15]

Murat, F., H-Convergence, Séminaire d’Analyse Fonctionnelle et Numérique, Université d’Alger, 197, 7–1978; English translation: H-Convergence, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998, 21–43.

[16]

Murat, F. and Tartar L., Calcul des variations et homogénéisation, Les Méthodes de L’homogénéisation: Theorie et Applications en Physique, Eirolles, Paris, 1985, 319–369; English translation: Calculus of variations and homogenization, Topics in the Mathematical Modelling of Composite Materials, F. Murat and L. Tartar (eds.), Birkaüser, Boston, 1998 139–174.

[17]

Serrin J.. A symmetry problem in potential theory. Arch. Rat. Mech. Anal., 1971, 43: 304-318

[18]

Spagnolo S.. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci, 1968 571-597

[19]

Stampacchia G.. Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier Grenoble, 1965, 15: 189-258

[20]

Tartar L.. Estimations fines de coefficients Homogénéisés, Ennio de Giorgi Colloquium, 1985 168-187

[21]

Tartar L.. Remarks on optimal design problems, Calculus of Variations, Homogenization and Continuum Mechanics, 1994, Singapore: World Scientific 279-296

[22]

Tartar L.. An introduction to the homogenization method in optimal design, Optimal Shape Design, 2000, Berlin: Springer-Verlag 47-156

[23]

Tartar L.. The general theory of the homogenization, A Personalized Introduction, 2009, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/