Identifiability and stability of an inverse problem involving a Fredholm equation

Carlos Conca , Rodrigo Lecaros , Jaime H. Ortega , Lionel Rosier

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 737 -762.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 737 -762. DOI: 10.1007/s11401-015-0974-9
Article

Identifiability and stability of an inverse problem involving a Fredholm equation

Author information +
History +
PDF

Abstract

The authors study a linear inverse problem with a biological interpretation, which is modelled by a Fredholm integral equation of the first kind, where the kernel is represented by step functions. Based on different assumptions, identifiability, stability and reconstruction results are obtained.

Keywords

Inverse problems / Olfactory system / Kernel determination / Fredholm integral equation / Partial differential equations / Numerical reconstruction

Cite this article

Download citation ▾
Carlos Conca, Rodrigo Lecaros, Jaime H. Ortega, Lionel Rosier. Identifiability and stability of an inverse problem involving a Fredholm equation. Chinese Annals of Mathematics, Series B, 2015, 36(5): 737-762 DOI:10.1007/s11401-015-0974-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Evans L. C., Gariepy R. F.. Measure Theory and Fine Properties of Functions, 1992

[2]

Flannery R., French D. A., Kleene S. J.. Clustering of CNG channels in grass frog olfactory cilia. Biophysical J., 2005, 91: 179-188

[3]

French D. A., Edwards D. A.. Perturbation approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation. J. Math. Biol., 2007, 55: 745-765

[4]

French D. A., Flannery R. J., Groetsch C. W. Numerical approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation. Mathematical and Computer Modelling, 2006, 43: 945-956

[5]

French D. A., Groetsch C. W.. Integral equation models for the inverse problem of biological ion channel distributions. Journal of Physics: Conference Series, 2007, 73: 1742-6596

[6]

Kleene S. J.. Origin of the chloride current in olfactory transduction. Neuron, 1993, 11: 123-132

[7]

Kleene S. J., Gesteland R. C.. Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci., 1991, 11: 3624-3629

[8]

Kleene S. J., Gesteland R. C.. Transmembrane currents in frog olfactory cilia. J. Membr. Biol., 1991, 120: 75-81

[9]

Kleene S. J., Gesteland R. C., Bryant S. H.. An electrophysiological survey of frog olfactory cilia. J. Exp. Biol., 1994, 195: 307-328

[10]

Titchmarsh E. C.. Introduction to the Theory of Fourier Integrals, 1937, Oxford: Clarendon Press

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/