Pressure boundary conditions for blood flows

Kirill P. Gostaf , Olivier Pironneau

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 829 -842.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 829 -842. DOI: 10.1007/s11401-015-0983-8
Article

Pressure boundary conditions for blood flows

Author information +
History +
PDF

Abstract

Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.

Among the various simplifications which have been proposed, the surface pressure model leads to a hierarchy of simpler models including one that involves only the pressure. The model exhibits fundamental frequencies which can be computed and compared with the pulse. Yet unconditionally stable time discretizations can be constructed by combining implicit time schemes with Galerkin-characteristic discretization of the convection terms in the Navier-Stokes equations. Such problems with prescribed pressure on the walls will be shown to be efficient and accurate as an approximation of the full fluid structure interaction problem.

Keywords

Fluid-structure interaction / Compliant walls / Finite element method / Navier-Stokes equations / Blood flow

Cite this article

Download citation ▾
Kirill P. Gostaf, Olivier Pironneau. Pressure boundary conditions for blood flows. Chinese Annals of Mathematics, Series B, 2015, 36(5): 829-842 DOI:10.1007/s11401-015-0983-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Begue, C., Conca, C., Murat, F. and Pironneau O., Les equations de Stokes et de Navier-Stokes avec conditions aux limites sur la pression, Nonlinear Partial Differential Equations and Their Applications, H. Brezis, J. Lions (eds.), College de France, Vol. IX, Pitman, RNM Longman, Boston, 1988, 179–264.

[2]

Boffi D., Gastaldi L.. A finite element approach for the immersed boundary method. Comput. Struct., 2003, 81: 491-501

[3]

Costabel M., Dauge M.. Maxwell and Lamé eigenvalues on polyhedral domains, 2002

[4]

Costabel M., Dauge M.. Singularities of electromagnetic fields in polyhedral domains, 1997

[5]

Cottet G. H., Maitre E., Milcent T.. Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: M2AN, 2008, 42: 471-492

[6]

Crosetto P., Deparis S., Fourestey G., Quarteroni A.. Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J. Sci. Comput., 2011, 33(4): 1598-1622

[7]

Decoene A., Maury B.. Moving meshes with freefem++. J. Numer. Math., 2013, 20(3–4): 195-214

[8]

De Hart J., Peters G., Schreurs P., Baaijens F.. A three-dimensional computational analysis of fluid-structure interaction in the aortic value. J. Biomechanics, 2003, 36: 103-112

[9]

Deparis S., Fernandez M. A., Formaggia L.. Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. ESAIM: M2AN, 2003, 37(4): 601-616

[10]

Hu F. Q., Li X. D., Lin D. K.. Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. J. Comp. Physics, 2008, 227: 4398-4424

[11]

Fernandez M.. Incremental displacement-correction schemes for incompressible fluid-structure interaction. Numer. Math., 2013, 123: 21-65

[12]

Formaggia L., Gerbeau J. F., Nobile F., Quarteroni A.. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg., 2001, 191: 561-582

[13]

Formaggia L., Quarteroni A., Veneziani A.. Cardiovasuclar Mathematics, Springer MS&A Series, 2009, New York: Springer-Verlag

[14]

Girault V., Glowinski R.. Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan Journal of Ind. and Applied Math., 1995, 12(3): 487-514

[15]

Girault V., Raviart P. A.. Finite Element Method for Navier-Stokes Equations, 1986, Berlin: Springer-Verlag

[16]

Gonzalez O., Simo J. C.. On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry. Comput. Methods Appl. Mech. Engrg., 1996, 134: 197-222

[17]

Gonzalez O.. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Engrg., 2000, 190: 1763-1783

[18]

Gostaf, K., Pironneau O. and Roux, F. X., Finite element analysis of multi-component assemblies: CADbased domain decomposition, DDM 14 Proc., to appear.

[19]

Marshall I.. Computational simulations and experimental studies of 3d phase-contrast imaging of fluid flow in carotid bifurcation geometries. J. Magnetic Resonance Imaging, 2010, 31: 928-934

[20]

Steinman D. A., Poepping T. L., Tambasco M. Flow patterns at the stenosed carotid bifurcation: Effect of concentric versus eccentric stenosis. Annal. Biomedical Engineering, 2000, 28: 415-423

[21]

Guermond J. L., Minev P., Shen J.. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg., 2006, 195(4, 4–47): 6011-6045

[22]

Heil M., Hazel A., Boyle J.. Solvers for large-displacement fluid-structure interaction problems: Segregated versus monolithic approaches. Comput. Mech., 2008, 43: 91-101

[23]

Le Tallec P.. Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Engrg., 2001, 190: 3039-3067

[24]

Nobile F., Vergara C.. An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comp., 2008, 30(2): 731-763

[25]

Pares C.. Un traitement faible par élément finis de la condition de glissement sur une paroi pour les équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 1988, 307: 101-106

[26]

Peskin C.. The immersed boundary method. Acta Numerica, 2002, 11: 479-517

[27]

Peskin C., McQueen D.. A three dimensional computational method for blood flow in the hearth-I, Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys., 1989, 81: 372-405

[28]

Pironneau O.. Finite Element Methods for Fluids, 1989, New York: Wiley

[29]

Pironneau O.. Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(9): 403-406

[30]

Pironneau O., Tabata M.. Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type. Int. J. Numer. Meth. Fluids, 2010, 64: 1240-1253

[31]

Rannacher, R., Incompressible Viscous Flow, Encyclopedia Mecanicae, E. Stein (ed.), Wiley, New York, 2004.

[32]

Rappaz, J. and Flotron, S., Numerical conservation schemes for convection-diffusion equations, to appear.

[33]

Si Z. Y.. Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. Numer. Algor., 2012, 59: 271-300

[34]

Tambaca J., Canic S., Kosor M. Mechanical Behavior of Fully Expanded Commercially Available Endovascular Coronary Stents. Tex Heart Inst. J., 2011, 38(5): 491-501

[35]

Thiriet, M., Biomathematical and biomechanical modeling of the circulatory and ventilatory systems, Control of Cell Fate in the Circulatory and Ventilatory Systems, Vol. 2, Math and Biological Modeling, Springer-Verlag, New York, 2011.

[36]

Usabiaga F., Bell J., Buscalioni R. Staggered schemes for fluctuating hydrodynamics. Multiscale Model Sim., 2012, 10: 1369-1408

[37]

Vignon-Clementel I., Figueroa A., Jansen K., Taylor C. A.. Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg., 2006, 195: 3776-3796

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/