Thermal creep flow for the Boltzmann equation

Feimin Huang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 855 -870.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (5) : 855 -870. DOI: 10.1007/s11401-015-0980-y
Article

Thermal creep flow for the Boltzmann equation

Author information +
History +
PDF

Abstract

It is known that the Boltzmann equation has close relation to the classical systems in fluid dynamics. However, it provides more information on the microscopic level so that some phenomena, like the thermal creep flow, can not be modeled by the classical systems of fluid dynamics, such as the Euler equations. The author gives an example to show this phenomenon rigorously in a special setting. This paper is completely based on the author’s recent work, jointly with Wang and Yang.

Keywords

Thermal creep flow / Non-classical fluid system / Boltzmann equation

Cite this article

Download citation ▾
Feimin Huang. Thermal creep flow for the Boltzmann equation. Chinese Annals of Mathematics, Series B, 2015, 36(5): 855-870 DOI:10.1007/s11401-015-0980-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atkinson F. V., Peletier L. A.. Similarity solutions of the nonlinear diffusion equation. Arch. Rat. Mech. Anal., 1974, 54: 373-392

[2]

Bardos C., Golse F., Levermore D.. Fluid dynamic limits of kinetic equations, I, Formal derivations. J. Statis. Phys., 1991, 63: 323-344

[3]

Bardos C., Levermore C., Ukai S., Yang T.. Kinetic equations: Fluid dynamical limits and viscous heating. Bull. Inst. Math. Acad. Sin. (N. S.), 2008, 3: 1-49

[4]

Boltzmann, L., Lectures on Gas Theory, translated by G. Stephen Brush, Dover Publications, New York, 1964.

[5]

Caflisch R. E.. The fluid dynamical limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math., 1980, 33: 491-508

[6]

Cercignani C., Illner R., Pulvirenti M.. The Mathematical Theory of Dilute Gases, 1994, Berlin: Springer-Verlag

[7]

Chapman S., Cowling T. G.. The Mathematical Theory of Non-Uniform Gases, 1990, Cambridge: Cambridge University Press

[8]

Chen C. C., Chen I. K., Liu T. P., Sone Y.. Thermal transpiration for the linearized Boltzmann equation. Comm. Pure Appl. Math., 2007, 60(2): 147-163

[9]

Duyn C. T., Peletier L. A.. A class of similarity solution of the nonlinear diffusion equation. Nonlinear Analysis, T. M. A., 1977, 1: 223-233

[10]

DiPerna R. J., Lions P. L.. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Annals of Mathematics, 1989, 130(2): 321-366

[11]

Esposito R., Pulvirenti M.. From particle to fluids, Handbook of Mathematical Fluid Dynamics, 2004 1-82

[12]

Golse F.. The Boltzmann equation and its hydrodynamic limits, evolutionary equations, 2005 159-301

[13]

Golse F., Perthame B., Sulem C.. On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Ration. Mech. Anal., 1986, 103: 81-96

[14]

Golse F., Saint-Raymond L.. The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl., 2009, 91: 508-552

[15]

Grad, H., Asymptotic Theory of the Boltzmann Equation II, Rarefied Gas Dynamics, J. A. Laurmann (ed.), Vol. 1, Academic Press, New York, 1963, 26–59.

[16]

Guo Y.. The Boltzmann equation in the whole space. Indiana Univ. Math. J., 2004, 53: 1081-1094

[17]

Huang F. M., Li J., Matsumura A.. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch. Rat. Mech. Anal., 2010, 197: 89-116

[18]

Huang F. M., Matsumura A., Xin Z. P.. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch. Rat. Mech. Anal., 2005, 179: 55-77

[19]

Huang F. M., Wang Y., Wang Y., Yang T.. The limit of the Boltzmann equation to the Euler equations for Riemann problemsv. SIAM J. Math. Anal., 2013, 45(3): 1741-1811

[20]

Huang, F. M., Wang, Y., Wang, Y. and Yang, T., Justification of diffusion limit for the Boltzmann equation with a non-trivial profile, submitted.

[21]

Huang F. M., Wang Y., Yang T.. Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Comm. Math. Phy., 2010, 295: 293-326

[22]

Huang F. M., Wang Y., Yang T.. Fluid dynamic limit to the Riemann solutions of Euler equations: I, Superposition of rarefaction waves and contact discontinuity. Kinet. Relat. Models, 2010, 3: 685-728

[23]

Huang F. M., Xin Z. P., Yang T.. Contact discontinuity with general perturbations for gas motions. Adv. Math., 2008, 219(4): 1246-1297

[24]

Huang F. M., Yang T.. Stability of contact discontinuity for the Boltzmann equation. J. Differential Equations, 2006, 229: 698-742

[25]

Levermore, C. D., Sun, W. R. and Trivisa, K., Local well-posedness of a ghost effect system, to appear.

[26]

Liu T., Yang T., Yu S. H.. Energy method for the Boltzmann equation. Physica D, 2004, 188: 178-192

[27]

Liu T., Yang T., Yu S. H., Zhao H. J.. Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch. Rat. Mech. Anal., 2006, 181: 333-371

[28]

Liu T., Yu S. H.. Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys., 2004, 246: 133-179

[29]

Maxwell J. C.. On the dynamical theory of gases. Phil. Trans. Roy. Soc. London, 1866, 157: 49-88

[30]

Sone Y.. Asymptotic theory of a steady flow of rarefied gas past bodies for small Knudsen numbers, Advances in Kinetic Theory and Continuum Mechanics, 1991, Berlin: Springer-Verlag 19-31

[31]

Sone Y.. Kinetic Theory and Fluid Dynamics, 2002, Boston: Birkhäuser

[32]

Sone Y.. Molecular Gas Dynamics, Theory, Techniques, and Applications, 2006, Boston: Birkhäuser

[33]

Ukai, S., Solutions of the Boltzmann Equation, Pattern and Waves-Qualitative Analysis of Nonlinear Differential Equations, M. Mimura and T. Nishida (eds.), Studies of Mathematics and Its Applications, 18, Kinokuniya-North-Holland, Tokyo, 1986, 37–96.

[34]

Ukai S.. The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ., 1986, 26: 323-331

[35]

Ukai S., Asano K.. The Euler limit and initial layer of the Boltzmann equation. Hokkaido Math. J., 1983, 12: 311-332

[36]

Xin Z. P., Zeng H. H.. Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations. J. Diff. Eqs., 2010, 249: 827-871

[37]

Yu S. H.. Hydrodynamic limits with shock waves of the Boltzmann equations. Commun. Pure Appl. Math., 2005, 58: 409-443

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/