Reinforced concrete (RC) bridge decks are directly exposed to daily traffic loads and often experience surface cracking caused by excessive stress or fatigue accumulation. The bridge deck fatigue performance over traffic loads needs to be assessed based on accurate dynamic interaction analysis of the bridge and realistic moving vehicles. Most of existing studies on fatigue assessment focus on either the bridge global response without sufficient details about the bridge deck, or refined bridge deck modeling without considering the full dynamic interaction between moving traffic and the bridge structure realistically. A hybrid fatigue assessment approach is developed by combining mode-based global bridge-traffic dynamic interaction analysis, finite-element (FE)-based refined bridge deck model, and fatigue assessment method directly based on the vehicle loads and shear strength of the bridge deck. The proposed approach is demonstrated with a typical 3-span concrete bridge under realistic traffic and road surface conditions. Based on the dynamic interaction and stress analysis results, the fatigue damage factor is further investigated with different road surface roughness levels and heavy truck proportions. It is found that the proposed analytical approach provides a useful tool to predict the bridge deck response and potential fatigue damage under realistic traffic flow.
During the life-cycle service of the constructed large span bridges, they face various threats every day due to the sophisticated operational environments. To ensure the structural safety, it is necessary to detect potential anomaly. Based on different inspection, monitoring and analysis technique, huge amounts of data that direct or indirect reflect structural characteristics can be obtained, and hence the anomaly detection methods developed. In order to provide a summary of relevant information needed by researchers to realize what is concerned about and how current practices deal with these issues, then further promote the application, this paper reviews understanding of anomaly detection in large span bridges. It starts with an analysis of concerned parameters, including dynamic and static structural parameters of a bridge. The various data sources are then commented. Next, existing anomaly detection methods are reviewed and classified. Finally, this paper concisely provides recent progress and discusses future research trends based on the identified knowledge gaps. We hope that this review will help development in this field.
The use of link slab (LS) made of Engineered Cementitious Composite (ECC) in the construction of joint-free bridge deck can meet structural performance requirements and enhance durability to minimize life cycle costs. Studies documented in the literature to date have been limited to composite steel-concrete I-deck girder bridges despite their commonly used reinforced concrete (RC) girder counterparts in construction. This paper deals with two span full RC deck girder joint-free bridges with ECC link slab (ECC-LS) constructed and tested under static and fatigue loading up to 1,000,000 cycles at 4 Hz subjected to mean stress level of 40% of girder ultimate load, followed by post-fatigue static loading to failure. Residual load, deflection, moment, rotation, stiffness, and energy absorbing capacity of fatigued bridge specimens are compared with its virgin (non-fatigued) counterparts to assess structural performance. Experimental moment capacities are compared with those obtained from existing analytical equations. The comparative performance of joint-fee bridge with RC deck girder is compared with its composite steel-concrete I-girder counterpart to assess its feasibility of construction.
Propped cantilever truss is not a common bridge construction technique. The performance of such bridges under operational and extreme loading is not reported in the literature either. In this paper, failure mechanisms in a propped cantilever truss bridge are reported using field investigation. The field observations are supplemented by numerical analysis to identify the causes of failure. A a systematic account of damage mechanisms in bridge components is also reported. The failure of the Lamgadi Bridge over the Seti River in Nepal is used as a case study example. The loading and construction protocols are detailed, and numerical analysis results are juxtaposed with the field observations to explain the failure mechanisms. Field observations and numerical results show that lack in adequate design is the most likely cause of the bridge collapse. Numerical results also indicate that the roller support at the propped end, unlike the hinged pot bearing used in the as constructed bridge would have been a safer choice. The failure could have been easily prevented with proper numerical simulation of the bridge response during the design phase.
Bridges are an essential part of every road and transportation system, and all countries must build bridges to improve their infrastructure. Accelerated bridge construction (ABC) is an innovative approach that has been noticed in recent years to facilitate and accelerate the process of building, repairing, or replacing bridges. This paper underscores the significance of ABC in bridge construction, focusing on its potential to offer speed, safety, and enhanced longevity for bridge pier. Through a comprehensive exploration of prefabricated elements and systems specific to bridge piers, insights into their applicability, advantages, and limitations are presented. A special section is dedicated to the investigation of pier connections under seismic loads. Furthermore, the review contrasts ABC with traditional construction methodologies, highlighting areas of excellence and potential improvement for ABC.
In recent years, high-strength bolts with friction-type joints have been lengthened to withstand increased traffic load. However, with increase in the joint length, the force able to be resisted by bolted joints has decreased owing to uneven distribution of the bolts within the joint. In addition, the proximity of secondary members to the joint has restricted the allowable size of the splice plates. It is therefore necessary to reduce the joint length while maintaining its design strength. In this study, interference fit bolts were assembled at both ends of a friction-type bolted joint to form a hybrid joint, and tensile tests were conducted to elucidate the load transmission mechanism, analyse the slip resistance, and verify whether the addition of the interference fit bolts improves the strength of the friction-type joint. It was concluded that despite a minor slip in the hybrid joint, the slip resistance was approximately 10% higher than that of the friction-type joint, and the overall load–deformation relationship maintained a quasi-linear behaviour up to 1.1 times the slip resistance of the friction-type joint. In addition, the hybrid joint had smaller data scattering than the friction-type joint, suggesting that the uneven load distribution and deformation in the joint was slightly improved by installing the interference fit bolts. The performance of hybrid joints is superior to that of the existing friction-type joints under the current slip limit specification.
Clustered group nail connectors are key connecting components for the full lifecycle construction and safe operation of steel–concrete composite structural bridges. To thoroughly investigate the stress mechanism of clustered group nail connectors in steel–concrete composite structures, this paper conducts a detailed numerical analysis on 100 sets of such connectors. It analyzes the stress mechanism of individual nail connectors and quantitatively calculates the group nail effect under the coupled action of multiple factors (nail spacing between layers, number of nail layers, concrete strength). Based on clarifying the force transmission patterns of nails and concrete in different layers during the loading process, this paper proposes a method for calculating the average bearing capacity reduction coefficient and the load-slip curve of single nails in clustered group nail connectors under the coupled action of multiple factors, which has been validated by experimental data. This research provides a theoretical basis for the design and calculation of group nail connectors in steel–concrete composite structural bridges.
Early warning of existing bridges is now predominated by deterministic methods. However, these methods face challenges in expressing uncertain factors (such as wind load, temperature load, and other variables, etc.). These problems directly impact the timeliness and accuracy of bridge early warning. This study develops an innovative method for bridge dynamic early warning with high versatility and accuracy. Long short-term memory network model (LSTM), expectation maximization (EM) and Gaussian mixture model (GMM) were employed in the proposed method. Firstly, the LSTM model is used to predict the measured monitoring data (such as deflection, strain, cable force, etc.) in real time to obtain the predicted results. Next, the number of clusters for the EM-GMM model is determined using the Calinski-Harabasz (CH) index. The method aims to comprehensively consider the internal cohesion of the clustering, ensuring accurate and reliable clustering results. Then, the EM-GMM model is used to cluster the random influence error and the predicted value, which can get the probabilistic prediction result of each corresponding random influence error. On this basis, the dynamic early warning interval under 95% confidence level is constructed. This facilitates early warning and decision-making for potential structural abnormalities. Finally, the accuracy and practicability of the method are verified by the comparison of engineering applications and existing specifications. The results demonstrate that the probabilistic early warning method considering the uncertain factors in the complex service environment can accurately achieve the dynamic early warning of bridges.
Bridge components are subject to both structural loads and environmental stressors, rendering them susceptible to accelerated deterioration and potential collapse in the absence of effective maintenance and rehabilitation strategies. Moreover, the phenomenon of wet-dry cycling, coupled with elevated chloride concentrations prevalent in coastal regions, further expedites the degradation process of bridges, thereby escalating maintenance frequency and repair costs. In response to this challenge, the integration of innovative materials such as Ultra High-Performance Concrete (UHPC) is being explored for the development and implementation of maintenance and rehabilitation strategies. This study presents a comparative analysis between conventional methods and UHPC applications for bridge repairs, utilizing Life Cycle Cost Analysis (LCCA) to encompass both agency and user costs, and applies Monte Carlo simulation to account for the variability of the modeling factors. A practical case study illustrates the applicability of the LCCA methodology, revealing that the utilization of UHPC contributes to a reduction in the total life cycle cost for bridge maintenance and rehabilitation. Life expectancy, Average Daily Traffic (ADT), and the duration of construction activities during rehabilitation emerge as the most influential factors affecting life cycle costs. The main contributions of the study are the development of the life-expectancy model and step-by-step Life-Cycle Cost Analysis (LCCA) methodology. Findings from this study aim to identify cost-effective retrofitting techniques for maintaining bridges in a “State of Good Repair.”
In order to clarify the effect of mechanical tensioning and SMA wire heating recovery on introducing prestress into CFRP sheet strengthened reinforced concrete (RC) beams, an experimental research on the bending performance of prestressed CFRP sheet strengthened RC beams was conducted. Based on the test results, a bending carrying capacity model for RC beams externally strengthened with prestressed CFRP sheets was proposed. The model provides calculation methods for the decompression moment, cracking moment, yielding moment, and ultimate moment, corresponding to different failure modes of the RC beams strengthened with externally bonded prestressed CFRP sheets. Four experimental beams were designed to verify the accuracy of the model with the prestresses of 100 MPa and 200 MPa. The results show that during the yield stage and strengthening stage, the loading-unloading stress-strain relationship curves of SMA wire under different prestrains are basically consistent. When the prestrain of SMA wire is 10%, the maximum recovery stress reaches 448.5 MPa. Under the same prestrain conditions, the maximum recovery stress of CFRP sheets was reduced by 37.8–39.5% when the prestress was introduced through heating recovery of SMA wires. The failure mode of mechanically tensioned prestressed CFRP sheet strengthened beams is the CFRP sheet debonding caused by mid-span bending cracks, while the failure mode of strengthened beams with prestressed CFRP sheet by SMA wire heating recovery is the CFRP sheet end debonding. The cracking moment and yield moment of the strengthened beams are significantly increased by two methods of introducing prestressing. The stiffness improvement of mechanically tensioned prestressed CFRP sheet strengthened beam is relatively large. While, the prestressed CFRP sheet strengthened beam by SMA wire heating recovery gradually experience end peeling failure of the CFRP sheet, and the prestressing effect does not effectively limit the development of cracks, resulting in limited stiffness improvement. The calculation results are in good agreement with the experimental results, proving that the proposed method for analyzing the entire bending process can be used to predict the bending mechanical properties of the prestressed CFRP sheet strengthened beams.
This paper deals with the collapse load of corroded parallel steel units, such as sets of corroded strands alone, or embedded in a concrete core. It is shown that what is relevant is the distribution of the damage between the units, and not the total area loss due to corrosion. The paper also shows that assuming that the area loss is related to the limit load loss is misleading, and potentially dangerous.
To mitigate cable oscillations in cable-stayed bridges, a common approach involves using a strategically positioned viscous damper near the cable’s anchorage and bridge deck. However, for longer cables, this method may be insufficient due to installation constraints. In such cases, supplementing the damping system with a high-damping rubber (HDR) damper near the cable’s anchorage point on the bridge tower becomes imperative to enhance the cable’s damping ratio. Conventional designs often overlook crucial factors like viscous damper support stiffness and stay cable bending stiffness when integrating dampers into cable-stayed structures. This study presents findings on achieving an effective damping ratio in stay cables by using both a viscous damper and an HDR damper, considering the influence of viscous damper support stiffness and stay cable bending stiffness. The results indicate that the combined deployment of these dampers achieves a damping efficiency approximately equivalent to the sum of their individual effects. Importantly, decreased viscous damper support stiffness significantly affects the damping effectiveness, leading to a rapid decline in the stay cable’s damping ratio. While stay cable bending stiffness also influences the damping ratio, its impact is relatively less pronounced than that of viscous damper support stiffness. The study outcomes enable a more accurate prediction of the achievable damping ratio for a stay cable with additional components, considering both damper support stiffness and stay cable bending stiffness. Furthermore, the study explores parameters of both the viscous damper and HDR damper, such as the viscous coefficient, loss coefficient, HDR damper stiffness, and damper placement, evaluating their influence on the first damping ratio of the stay cable. The survey results provide valuable insights for determining optimal parameters for both dampers, maximizing the damping efficiency of cable-stayed bridges.
Cofferdam is widely employed in the construction of underwater bridge foundations. Its crucial attribute lies in providing a dedicated platform for construction activities and enhancing the water resistance dimensions in structural design, consequently amplifying local scour. However, previous research on local scour has seldom investigated the effect of construction facilities on the life cycle development of local scour on foundations. This gap has led to a misunderstanding of protective strategies against local scour throughout the construction period. In this paper, a scour experiment platform was implemented with a unidirectional flume. Physical model experiments were conducted to scrutinize the protective impact of anti-scour rib structures against local scour. The experimentally determined scour depth was compared to assess the performance of the anti-scour rib protection system. Oblique photogrammetry was subsequently used to capture the morphology of the equilibrium scour pit in the experiments. The associated topographical data were imported into Fluent commercial fluid software for in-depth flow field analysis. A numerical flume model was established to examine the hydraulic characteristics under two distinct topographical conditions: a smooth riverbed during the initial stage of scour and a scoured riverbed at the equilibrium stage of scour. To further determine the protective mechanism of anti-scour rib protection, the influence of anti-scour rib protection on shear stress was investigated numerically. Analyses revealed that incorporating scour protection ribs during cofferdam construction alters the flow field characteristics, hindering the downward movement of subsurface flow beneath the structure, reducing bed shear stress, and consequently mitigating scour effects. The instantaneous protective effect of scour protection ribs strengthens as the scour topography develops. The protective effectiveness of scour protection ribs was mainly influenced by rib length, spacing, and shape.
A significant number of wind bracings in existing railway transom top bridges are numerically assessed deficient against the assessment nosing load recommended by the AS5100, where in almost all cases, there is no observed evidence of wind bracings being overloaded. This paper estimates the nosing load applied by various trains to a couple of random spans of an existing railway transom top bridge. Firstly, field testing of this bridge is conducted and the measured stresses at the mid-center of girders and wind bracings are collected during various normal train operations to validate the developed Finite Element (FE) models of this bridge. Then, the nosing loads due to different trains are estimated using the validated FE model through a two-staged validation approach, including automatic FE stress intensity optimization and rigorous manual FE model sensitivity analysis while transoms in various conditions are also incorporated in the FE model. Results demonstrate that the nosing load is significantly less than the required load in the AS5100 with magnitudes ranging between 8.6% to 9.4% of the maximum vertical axle load of the passed trains; suggesting that the AS5100 assessment nosing load should be revised to avoid unnecessary expensive upgrades of numerically assessed deficient wind bracings.
In order to identify the time-varying frequency and amplitude of structural vibration based on the bridge structural health monitoring data and obtain the cable force of cable-stayed bridges in real time, a spectrum analysis method based on amplitude and phase estimation (APES) was proposed in this study. The amplitude spectrum of the acceleration data is first calculated by the APES method, the real-time spectrogram of the cable is obtained by the sliding window method. Then the modal frequency and amplitude are automatically extracted from the real-time spectrum by using a frequency extrusion post-processing technique, which can be regarded as the average value of the instantaneous frequency and amplitude respectively. Next, the fundamental frequency of the cable is extracted by using an automatic identification method, and the performance of the proposed method is verified. Finally, real-time scoring of cable forces and structural condition assessment is achieved with consideration of the moderation index model as well as the material strength. The results show that the APES method can use shorter calculation samples than the traditional Fast Fourier Transform (FFT) to obtain higher resolution and more accurate amplitude, which provides a theoretical basis for the real-time identification of fundamental frequency based on short-term monitoring data. The frequency extrusion post-processing-algorithm can reduce the spectrum recognition delay and improve timeliness of the cable force evaluation. The time-varying cable force with an interval of 10 s can be used to reflect the health status of the cable in time. The research results can provide technical support for the real-time extraction of cable force of long-span cable-stayed bridges, and can also provide an effective basis for component condition evaluation and bridge maintenance decision-making.
Conventional wind speed distribution methods (e.g., Rayleigh distribution and Weibull distribution) may not adequately capture complex characteristics of wind fields in mountainous areas. To address this problem, this study proposes a semi-parametric mix method for modeling the distribution of average wind speeds based on the combination of nonparametric Kernel Density Estimation (KDE) and Generalized Pareto Distribution (GPD). In the proposed method, KDE focuses on capturing the distribution in the main part of average wind speeds, while GPD aims at performing the distribution in terms of those in the extreme part. The segment point (i.e., the threshold) between KDE and GPD distributions is determined based on the combination of conditional mean excesses criterion and empirical rule. Meanwhile, the selection of modeling parameters should ensure that the mix distribution model is continuous and differentiable at the identified threshold point. Then, the commonly-used conditional probability model is further introduced to describe the wind direction distribution. Finally, a case study based on the measured 10-min average wind speeds at a mountainous bridge site is employed to demonstrate the effectiveness of the proposed method. The results indicate that: (1) the distribution of omnidirectional average wind speeds in the mountainous bridge site exhibits an obviously single-peak characteristic, while those considering wind directionality present a certain bimodal characteristic; (2) the proposed method can effectively describe wind speed distributions with different statistical characteristics, and the fitting accuracy outperforms the frequently-employed Weibull distribution model.
This paper mainly introduces the emergency repair process for small- and medium-span bridges. The causes of deterioration were analysed by investigating old bridges. After comparison and selection of schemes, the scheme of beam replacement was confirmed using a lightweight steel ultra-high performance concrete (UHPC) composite beam as the superstructure. The main components of the calculations and the design are introduced in detail. Finally, through the load test of the bridge, it was shown that the lightweight steel-UHPC composite beam had good performance and met the requirements of Highway Level I bearing capacity. The lightweight steel-UHPC composite beam described in this paper has the characteristics of high strength, light weight, fast construction, excellent working performance, and remarkable social and economic benefits. It can be popularised and applied in the emergency repair of small- and medium-span bridges and new bridges.
Sea-crossing bridges are subject to long-term simultaneous wave and current loadings throughout thier life cycle. The wave-current interaction makes the hydrodynamic load calculation difficult and challenging, especially in simulating the noncollinear wave-current interactions between waves and currents due to potential disturbances such as wall reflections within the observational zone. Therefore, in this study, a numerical flume was built based on the Reynolds time-average (RANS) equation and k-ε turbulence model using the computational fluid dynamics (CFD) software Flow-3D to investigate noncollinear wave-current interaction numerical simulation methods. The collinear wave-current interactions were then numerically simulated using the inflow boundary and mass source wave generation method, and the developed numerical flume was validated with experimental results based on a large-scale wave-current flume. Furthermore, a three-dimensional numerical simulation of complex noncollinear wave-current interactions was developed. The developed rectangular numerical basin based on the collinear wave-current flume was validated with theoretical results regarding wavelength variations in a noncollinear wave-current interaction field. Finally, the effective observation zone of orthogonal wave-current interactions was explored. This study is important for advancing bridge hydrodynamic research into noncollinear wave-current interactions.
Breakwaters play an important role in in mitigating wave-induced damage to marine structures. However, conventional submerged breakwaters often exhibit limited wave dissipation capabilities, while floating breakwaters may lack adequate safety performance. Therefore, this study introduces a novel combined breakwater design aimed at addressing the shortcomings of both traditional types. The proposed breakwater integrates a floating structure with a trapezoidal submerged breakwater via an anchor chain connection. To evaluate its efficacy, numerical simulations of wave interactions with structures were conducted using the OpenFOAM computational fluid dynamics (CFD) software in a two-dimensional (2D) numerical flume. Dynamic mesh technology was employed to simulate the motion of the floating body, and the resulting wave loads on a box girder bridge deck positioned behind the breakwater were analyzed to assess the combined breakwater’s protective capabilities and influencing factors. Analysis of wave heights and loads on the bridge deck revealed that the combined breakwater outperformed traditional submerged breakwaters in terms of wave dissipation. Furthermore, it was observed that the protective efficacy of the combined breakwater was more sensitive to variations in the size of the floating body compared to the submerged structure, and more responsive to changes in wave period than wave height. Leveraging the ability of the floating body to attenuate waves near the surface and the enhanced impact resistance provided by the combined floating and submerged structures, the proposed breakwater offers a promising approach to improving wave attenuation performance and enhancing safety for coastal infrastructure.
In order to study the effect of the velocity pulse on the dynamic response of the train-bridge system of the high-speed railway simple supported beam bridge, the velocity pulse is simulated by the trigonometric function method and superimposed with the far-field earthquake without pulse to synthesize the pulse with different pulse types, pulse periods and pulse peaks. A 10
Although building information modelling (BIM) has been widely used in the building industry, its usage in infrastructure projects such as bridges has been very challenging. Extended Reality (XR) that simulates a construction project is still considered a new technology in the Architecture, Engineering, and Construction (AEC) industry. This paper investigates the viability of integrating both BIM and XR technologies into transportation infrastructure projects. A fully integrated workflow for introducing different XR, Augmented Reality (AR), and Virtual Reality (VR), and BIM technologies using different software for a case study of El-Merghani bridge, a reinforced concrete girder type bridge, was developed. The models for the bridge included GIS integration and geometric road design according to AASHTO, documentation, shop drawings and quantification were developed for the bridge. A hypothetical time schedule was generated in Oracle Primavera P6 elevating the BIM model to 4-D and developing VR and AR virtual experiences with the capability to investigate, visualize, and present the model in a virtual environment, at a high level of immersion. Additionally, the associated risk reduction for the considered XR technology was assessed using Monte Carlo simulation. The workflow and the detailed 3D models developed for the bridge along with the highly immersive VR and AR experiences have provided an interactive platform for engineers and different stakeholders to monitor the project during the design and construction phases. The risk analysis showed that significant cost savings can be achieved with the utilization of VR and AR technology in bridges construction.
To improve the energy dissipation and self-resetting ability of bridge structures under strong earthquakes, a new buckling-restrained SMA bar-based friction damper (SFD) is proposed. The damper is composed of buckling-restrained super-elastic SMA bars, friction pads, and a steel frame. The buckling-restrained SMA bars provide self-reset capability, while the friction pads provide additional energy dissipation capacity. Firstly, the configuration, working mechanism, and restoring force model of the SMA bar-based friction damper are introduced. Secondly, a specimen of the damper is made, and the pseudo-static test is carried out. Finally, the experimental results are analyzed based on the Abaqus finite element model. The results indicate that the damper has better self-resetting ability and energy dissipation capacity.
The time-dependent effects in steel-concrete composite beam bridges can intensify track irregularities, subsequently leading to amplified train-bridge coupling vibrations. This phenomenon may increase the stress amplitudes in the bridge steel, thereby impacting the fatigue performance of the composite structures. This paper employs multiple rigid body dynamics to construct a high-speed train model and utilizes the finite element method to develop a steel-concrete composite beam element model that accounts for time-dependent effects, interfacial slip, and shear hysteresis. This approach enables the computational analysis of the train-bridge coupling system, facilitating an investigation into the influence of concrete’s time-dependent effects on the fatigue performance of railway steel-concrete composite bridges. Focusing on a 40-m simply supported composite bridge, the train-bridge coupling dynamic responses were computed for each operational year within a decade of the completion of construction. Applying the P-M linear fatigue damage accumulation theory, statistical analysis of stress history data across various operational periods was conducted to quantify the fatigue damage induced by a single eight-car high-speed train on the lower flange of the mid-span steel beam and the beam-end studs. The findings reveal that the beam-end studs sustain greater damage than the mid-span steel beam. Moreover, the detrimental impact of time-dependent effects diminishes with the increase of operational years. Notably, compared to the initial year, the fatigue damage to the lower flange of the mid-span steel beam by an eight-car train in the tenth year has surged by 39.3%. Conversely, the damage to the beam-end studs has decreased by 47.5%.
A novel prefabricated segmental guardrail is proposed to facilitate connections between guardrails and between guardrails and bridge decks by casting ultrahigh-performance concrete (UHPC) joints in situ. Through finite element crash simulation analysis of three types of vehicles and crash tests of real vehicles, the prefabricated segmental guardrail with a UHPC connection was systematically evaluated in terms of its energy-absorbing capacity, vehicular acceleration, post-impact trajectory of the impacting vehicle, and behaviour of the guardrail upon impact. During the evaluation process, performance comparisons of the prefabricated segmental guardrails are made with the monolithic concrete guardrails. The results indicate that the performance of the prefabricated segmental guardrail with a UHPC connection was superior to that of the conventional concrete monolithic guardrails: it exhibited a higher level of crash performance, the occupants of the impacting vehicle were better protected, and the impacting vehicle exhibited better post-collision stability. Finally, the convenience of the prefabricated segmental guardrails with UHPC connections was proven in practical engineering applications.
In order to assess the damage condition of bridge components for a large-span rigid bridge in a soft clay site in a mountainous area in China southwest, a finite element model of a large-span rigid bridge is established based on the OpenSees software, and the joint probability density distribution function of the ground motion strength and seismic demand and the marginal distribution function of the ground motion are introduced into the kernel density function. As a basis to get the method of calculating the fragility of the bridge members, and the method is verified for its feasibility, on this basis, the damage condition of the bridge components are analyzed, and finally the damage condition of the bridge system are analyzed by the first-order bounds method and the improved PCM method (IPCM). The results showed that: (1) Kernel density method (KDE) can effectively calculate the damage probability of each component, for example, under ground motions with PGA equal to 0.2 g, the probability of slight damage of the 1# pier is 29%, that of the intermediate consolidation pier (2# pier ~ 4# pier) is about 90%; the probability of slight damage of the 1# bearing is 48%, and that of the 2# bearing is 87%. (2) Reasonable value of the expansion joints can effectively reduce the probability of main beam collision. In this investigation, the value is taken as 0.18 m ~ 0.24 m. (3) The bridge system is more likely to be damaged than a single component in the system, and the damage probability of a single component cannot be used as a criterion for the bridge system in the actual working condition. Comparing the first-order boundary law with the IPCM method, the IPCM method has higher accuracy.
The approximation of complex engineering problems and mathematical regressions serves as the authentic inspiration behind the artificial intelligence metamodeling methods. Among these methods, polynomial chaos expansion, along with artificial neural networks, has emerged at the forefront and become the most practical technique. Previous studies have highlighted their robust capabilities in solving complex problems and their wide utilization across numerous applications, particularly in structural analysis, optimization design problems, and predictive models of uncertainty outcomes. The aim of this article is to present a methodology that introduces their implementation of for structural engineering, primarily focusing on reinforced concrete bridges. The proposed approach consists of demonstrating the applicability of the polynomial chaos to evaluate the dynamic behavior of two-span reinforced concrete bridges through a predictive model of natural vibration properties for eigenvalues modal analysis. Subsequently, response spectral method is conducted according to the Moroccan guide for bridge seismic design and the prescription of the EUROCODE 8 within the context of reliability assessment using Monte Carlo simulation. The efficacy of the proposed approach is illustrated by a comparison between the predicted vibration properties and the resulting values obtained through finite element modal analysis and artificial neural networks. The polynomial chaos process is based on a collected dataset of multiple reinforced concrete bridges sourced from technical studies offices and the Regional Administration of the East, affiliated with the Moroccan Ministry of Equipment and Water. Finally, this work contributes to the field by enhancing predictive modeling and reliability evaluation for bridge engineering using artificial intelligence metamodels.