Please wait a minute...

Frontiers of Mechanical Engineering

Front. Mech. Eng.    2017, Vol. 12 Issue (4) : 459-476
Fabrication of Si-based three-dimensional microbatteries: A review
Chuang YUE1,2, Jing LI1(), Liwei LIN2
1. Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
Download: PDF(1313 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

High-performance, Si-based three-dimensional (3D) microbattery systems for powering micro/nano-electromechanical systems and lab-on-chip smart electronic devices have attracted increasing research attention. These systems are characterized by compatible fabrication and integratibility resulting from the silicon-based technologies used in their production. The use of support substrates, electrodes or current collectors, electrolytes, and even batteries used in 3D layouts has become increasingly important in fabricating microbatteries with high energy, high power density, and wide-ranging applications. In this review, Si-based 3D microbatteries and related fabrication technologies, especially the production of micro-lithium ion batteries, are reviewed and discussed in detail in order to provide guidance for the design and fabrication.

Keywords three-dimensional (3D)      wafer-scale      Si-based anode      micro-LIBs      thin-film deposition     
Corresponding Authors: Jing LI   
Just Accepted Date: 07 June 2017   Online First Date: 19 September 2017    Issue Date: 31 October 2017
 Cite this article:   
Chuang YUE,Jing LI,Liwei LIN. Fabrication of Si-based three-dimensional microbatteries: A review[J]. Front. Mech. Eng., 2017, 12(4): 459-476.
Fig.1  Market forecasting of the different Si-based MEMS smart devices in the future [4]
Fig.2  Ragone plot of different electrochemical energy storage systems. Reprinted with permission from Ref. [14]. Copyright 2001, Nature Publishing Group
Fig.3  Illustration of the working principle of a Li-ion battery [15]
Fig.4  Reactions that occur in the electrodes of a Li-ion battery during the charge/discharge process [15]
Fig.5  Applications of different Li-ion battery energy storage systems [1728]
Fig.6  (a) Diagram of a conventional 2D all-solid-state thin-film Li-ion battery structure and (b) its SEM section view. Reprinted with permission from Ref. [29], Copyright 2000, Elsevier. (c) Advantages of the 3D battery structure [30]
Fig.7  Different structures of 3D micro-LIBs. (a) 3D Al current collector. Reprinted with permission from Ref. [33], Copyright 2009, American Chemical Society. (b) 3D Si electrode. Reproduced with permission from Ref. [34], Copyright 2013, Wiley-VCH. (c) 3D solid state electrolyte based on Ref. [35]. (d) 3D Si-based architectures. Reproduced with permission from Ref. [36], Copyright 2007, Wiley-VCH
Fig.8  (a) Theoretical capacity and relative potential vs. Li/Li+ of common electrodes in LIBs. Reprinted with permission from Ref. [44], Copyright 2009, Royal Society of Chemistry. (b) Scanning electron microscopy (SEM) image of the complex Si-based microchip structure; (c) wafer-scale LIB units can be potentially integrated with the micro/nano-intelligent electronic devices [4547]
Fig.9  (a) Schematic illustration of different Si anode morphology changes after lithiation process. Reprinted with permission from Ref. [48], Copyright 2007, Nature Publishing Group. (b) The two main methods used to solve the issue of large volume expansion in Si electrodes. Reprinted with permission from Refs. [48,49], Copyright 2007/2012, Nature Publishing Group; reprinted with permission from Refs. [50,52?54], Copyright 2011/2012/2012/2011, American Chemical Society; reproduced with permission from Ref. [55], Copyright 2014, Wiley-VCH
Fig.10  (a) Scheme of 3D integrated all-solid-state micro-LIB. Reproduced with permission from Ref. [36], Copyright 2007, Wiley-VCH. (b)–(d) SEM images of different locations in 3D Si/TiN/poly-Si electrodes (AR 10 and 20); (e) the cycle performance of the 3D TiN/poly-Si stacks (AR 10 and 20) at a current density of 25mA·cm−2 within a voltage window from 0–3 V vs. Li/Li+; (f)–(g) SEM images of the 3D Si/TiN/poly-Si electrode (AR 10) after 10 charge/discharge cycles. Reprinted with permission from Ref. [60], Copyright 2010, Royal Society of Chemistry
Fig.11  SEM images of the (a) Si/photoresist microtubes and (b) Si/Pt/TiO2 microtubes after the etching mask removal, ALD of Pt and TiO2; (c)–(d) scanning transmission electron microscopy (STEM) image of a single Si/Pt/TiO2 microtube and the energy-dispersive X-ray spectroscopy (EDX) elemental mapping for Ti, Si, and Pt elements; (e) cyclic voltammetry (CV) measurement results of the 2D planar, micropillars, and microtubules electrodes decorated with the Pt/TiO2 layers; (f) gavalnostatic charge/discharge testing for the 2D (TiO2 layer, 60 nm) and 3D Si/Pt/TiO2 microtube electrodes (S1 samples: TiO2 layer, 60 nm). Reproduced with permission from Ref. [64], Copyright 2014, Wiley-VCH
Fig.12  (a)–(b) SEM images of the fabricated Si double microtubes before and after the removal of photoresist mask using the deep reactive ion etching technique; (c)–(f) different magnification TEM images of Al2O3/Pt/TiO2/Li3PO4 stacking layers coated on the 3D double microtubes; (g)–(l) EDX-STEM elemental mapping of the Si-3D/Al2O3/Pt/TiO2/Li3PO4/SiO2-protective stacked layers; (m) high-resolution transmission electron microscopy (HRTEM) image of the Pt/TiO2/Li3PO4 layers; (n)–(o) the differential surface capacity versus potential plots and the rate performance of the Si-3D (simple microtube: SMT)/Al2O3/Pt/TiO2/Li3PO4 electrodes. Reproduced with permission from Ref. [65], Copyright 2016, Wiley-VCH
Fig.13  (a) SEM image of the photoresist mold patterned on the Si wafer; (b) SEM image of the 3D Au current collector employing electroplating followed by the mold removal; (c) SEM image of the Tobacco mosaic virus (TMV) nanostructures self-assembled onto the 3D gold micropillars surface and then coated with Ni thin-film in an electroless plating solution, followed by ALD of V2O5 anode; (d) TEM image of an individual virus-templated nanorod; (e) SEM image of a single Si/Au-3D/TMV/Ni/V2O5 micropillar in a close-up top view; (f) CV measurement and (g) cycle performance of the virus-structured electrodes with and without 3D Au micropillars; (1)–(4) Scheme of the Si/Au-3D/TMV/Ni/V2O5 micropillar electrodes fabrication process. Reproduced with permission from Ref. [66], Copyright 2012, American Chemical Society
Fig.14  (a–b) Schematic description of a 3D micro-LIB on a perforated Si or glass substrates. Reproduced with permission from Refs. [69,70], Copyright 2005/2006, Elsevier. (c) Comparison of the areal capacity between the 3D micro-LIB and 2D thin-film micro-LIB. Data based on Ref. [71]
Fig.15  (a) The fabrication process of the 3D micro-LIB; (b–c) SEM images of C/PPYDBS interdigitated electrode arrays and (d) its charge/discharge characteristic. Reproduced with permission from Ref. [72], Copyright 2007, Elsevier
Fig.16  (a) Overview of the 3D all-solid-state integrated micro-LIB; (b)–(d) SEM images of the Si NPL arrays after the LiPON/LiFePO4 deposition. Reproduced with permission from Ref. [76], Copyright 2011, Elsevier
Fig.17  Areal capacity vs. different 3D Si-based micro-LIB electrodes (black arrow: SEM images of the electrodes after Li-ion inserting/de-inserting process; bottom: SEM image of a 3D all-solid-state micro/nano-LIB arrays in the section view) [7982]. Reproduced with permission from Ref. [83], Copyright 2016, American Chemical Society; Reproduced with permission from Ref. [84], Copyright 2015, Wiley-VCH
Fig.18  Optimization of a Si-based all-solid-state micro-LIB from 2D to semi-3D
1 WHAT IS A TRANSISTOR? Retrieved from 
2 Intel Core i7-5960X, -5930K And-5820K CPU Review: Haswell-E Rises. Retrieved from 
3 IBM’s crazy-thin 7 nm chip will hold 20 billion transistors. Retrieved from 
4 Growing in maturity, the MEMS industry is getting its second wind. Retrieved from 
5 Hu Y S, Demir-Cakan  R, Titirici M M , et al.. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angewandte Chemie International Edition, 2008, 47(9): 1645–1649
6 Xin X, Zhou  X, Wang F , et al.. A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22(16): 7724–7730
7 Wang C, Taherabadi  L, Jia G , et al.. C-MEMS for the manufacture of 3D microbatteries. Electrochemical and Solid-State Letters, 2004, 7(11): A435–A438
8 Talin A A, Ruzmetov  D, Kolmakov A , et al.. Fabrication, testing, and simulation of all-solid-state three-dimensional Li-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(47): 32385–32391
9 West W C, Whitacre  J F, White  V, et al.. Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications. Journal of Micromechanics and Microengineering, 2001, 12(1): 58–62
10 O’regan B, Grätzel  M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
11 Lee S K, Son  S H, Kim  K S, et al.. Development of nuclear micro-battery with solid tritium source. Applied Radiation and Isotopes, 2009, 67(7‒8): 1234–1238
12 Sprague I B, Dutta  P. Performance improvement of micro-fuel cell by manipulating the charged diffuse layer. Applied Physics Letters, 2012, 101(11): 113903
13 Yang Y, Pradel  K C, Jing  Q, et al.. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano, 2012, 6(8): 6984–6989 doi:10.1021/nn302481p
14 Tarascon J M, Armand M.  Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359‒367
15 Sodium as alternative to lithium in batteries. Retrieved from 
16 How cells work. Retrieved from 
17 Zero electric motorcycles prove quiet, efficient, and fun. Retrieved from 
18 Infinite Power Solutions, Inc. Retrieved from 
19 Powering New Product Innovation. Retrieved from 
20 11- and 13-inch MacBook Air (Late 2010). Retrieved from 
21 Panel G M. Transportation in the 21st Century. Retrieved from 
22 Stop going over your data-ways to preserve your cell phone data. Retrieved from
23 Hospital trust implants world’s first MRI-safe pacemaker. Retrieved from
24 Technology boosts Zambian health and outbreak early warning systems. Retrieved from 
25 Tiny swarming robots coming soon to eat your data. Retrieved from 
26 The ingestible electronic drug-delivery system. Retrieved from 
27 Explore ink technology, technology engadget, and more! Retrieved from
28 Dragonfly surveillance cyborg could aid pollination. Retrieved from
29 Bates J B, Dudney  N J, Neudecker  B, et al.. Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000, 135(1‒4): 33–45
30 3D batteries. Retrieved from 
31 Wang C, Taherabadi  L, Jia G ,  et al.. C-MEMS for the manufacture of 3D microbatteries. Electrochemical and Solid-State Letters, 2004, 7(11): A435–A438
32 Wang W, Tian  M, Abdulagatov A , et al.. Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano Letters, 2012, 12(2): 655–660
33 Cheah S K, Perre  E, Rooth M , et al.. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Letters, 2009, 9(9): 3230–3233
34 Sun K, Wei  T S, Ahn  B Y, et al.. 3D Printing of interdigitated Li-ion microbattery architectures. Advanced Materials, 2013, 25(33): 4539–4543
35 Kotobuki M, Suzuki  Y, Munakata H , et al.. Fabrication of three-dimensional battery using ceramic electrolyte with honeycomb structure by sol-gel process. Journal of the Electrochemical Society, 2010, 157(4): A493–A498
36 Notten P H L ,  Roozeboom F ,  Niessen R A H , et al.. 3-D integrated all-solid-state rechargeable batteries. Advanced Materials, 2007, 19(24): 4564–4567
37 Wang J, Du  N, Zhang H , et al.. Cu-Si1−xGex core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. Journal of Power Sources, 2012, 208: 434–439
38 Bi Z, Paranthaman  M P, Menchhofer  P A, et al.. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 2013, 222: 461–466
39 Reddy A L M ,  Shaijumon M M ,  Gowda S R , et al.. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Letters, 2009, 9(3): 1002–1006
40 Wu H, Cui  Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5): 414–429
41 Chan C K, Zhang  X F, Cui  Y. High capacity Li ion battery anodes using Ge nanowires. Nano Letters, 2008, 8(1): 307–309
42 Ortiz G F, Hanzu  I, Lavela P , et al.. Nanoarchitectured TiO2/SnO: A future negative electrode for high power density Li-ion microbatteries? Chemistry of Materials, 2010, 22(5): 1926–1932
43 Li X, Cheng  F, Guo B , et al.. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. Journal of Physical Chemistry B, 2005, 109(29): 14017–14024
44 Landi B J, Ganter  M J, Cress  C D, et al.. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009, 2(6): 638–654
45 Zoom into a computer chip. Retrieved from 
46 Micronas sells more Hall sensors, earns less. Retrieved from
47 La memoria DRAM impulsa el mercado de semiconductores, pero no por mucho tiempo. Retrieved from 
48 Chan C K, Peng  H, Liu G , et al.. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
49 Wu H, Chan  G, Choi J W , et al.. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
50 Yao Y, McDowell  M T, Ryu  I, et al.. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949–2954
51 Chan C K, Patel  R N, O’connell  M J, et al.. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4(3): 1443–1450
52 Liu N, Wu  H, McDowell M T , et al.. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 2012, 12(6): 3315–3321
53 Song T, Cheng  H, Choi H , et al.. Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano, 2012, 6(1): 303–309
54 Hertzberg B, Alexeev  A, Yushin G . Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. Journal of the American Chemical Society, 2010, 132(25): 8548–8549
55 Chang J, Huang  X, Zhou G , et al.. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 2014, 26(5): 758–764
56 Zhang W, Hu  J, Guo Y , et al.. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Advanced Materials, 2008, 20(6): 1160–1165
57 Nicolet M A. Diffusion barriers in thin films. Thin Solid Films, 1978, 52(3): 415–443
58 Etacheri V, Haik  O, Goffer Y , et al.. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir, 2012, 28(1): 965–976
59 Jung S C, Han  Y K. How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries? Journal of Physical Chemistry Letters, 2013, 4(16): 2681–2685
60 Baggetto L, Knoops  H C M, Niessen  R A H, et al.. 3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. Journal of Materials Chemistry, 2010, 20(18): 3703–3708
61 Baggetto L, Niessen  R A H, Roozeboom  F, et al.. High energy density all-solid-state batteries: A challenging concept towards 3D integration. Advanced Functional Materials, 2008, 18(7): 1057–1066
62 Oudenhoven J F M ,  Baggetto L ,  Notten P H L . All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts. Advanced Energy Materials, 2011, 1(1): 10–33
63 Xie J, Oudenhoven  J F M, Li  D, et al.. High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. Journal of the Electrochemical Society, 2016, 163(10): A2385–A2389
64 Eustache E, Tilmant  P, Morgenroth L , et al.. Silicon-microtube scaffold decorated with anatase TiO2 as a negative electrode for a 3D litium-ion microbattery. Advanced Energy Materials, 2014, 4(8): 1301612
65 Létiche M, Eustache  E, Freixas J , et al.. Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Advanced Energy Materials, 2016, 7(3): 1601402
66 Gerasopoulos K, Pomerantseva  E, McCarthy M , et al.. Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. ACS Nano, 2012, 6(7): 6422–6432
67 Orendorff C J ,  Doughty D . Lithium ion battery safety. Interface-Electrochemical Society, 2012, 21(2): 35
68 Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007, 164(1): 351–364
69 Golodnitsky D, Yufit  V, Nathan M , et al.. Advanced materials for the 3D microbattery. Journal of Power Sources, 2006, 153(2): 281–287
70 Golodnitsky D, Nathan  M, Yufit V , et al.. Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ionics, 2006, 177(26): 2811–2819
71 Nathan M, Golodnitsky  D, Yufit V , et al.. Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. Journal of Microelectromechanical Systems, 2005, 14(5): 879–885
72 Min H S, Park  B Y, Taherabadi  L, et al.. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. Journal of Power Sources, 2008, 178(2): 795–800
73 Peng K, Jie  J, Zhang W , et al.. Silicon nanowires for rechargeable lithium-ion battery anodes. Applied Physics Letters, 2008, 93(3): 033105
74 Wan J, Kaplan  A F, Zheng  J, et al.. Two dimensional silicon nanowalls for lithium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(17): 6051–6057
75 Ge M, Fang  X, Rong J , et al.. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology, 2013, 24(42): 422001
76 Lethien C, Zegaoui  M, Roussel P , et al.. Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery. Microelectronic Engineering, 2011, 88(10): 3172–3177
77 Thompson S E, Parthasarathy  S. Moore’s law: The future of Si microelectronics. Materials Today, 2006, 9(6): 20–25
78 Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968, 3(1): 37–46
79 Yue C, Li  J, Kang J . Fabrication of the hexagonal Si nanorod arrays using the template of polystyrene nanospheres in monolayer dispersion. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2014, 228(1): 40–45
80 Yue C, Yu  Y, Yin J , et al.. Fabrication of 3D hexagonal bottle-like Si-SnO2 core-shell nanorod arrays as anode material in on chip micro-lithium-ion-batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(27): 7896–7904
81 Li J, Yue  C, Yu Y , et al.. Si/Ge core-shell nanoarrays as the anode material for 3D lithium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(45): 14344–14349
82 Yue C, Yu  Y, Wu Z , et al.. Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays. Nanoscale, 2014, 6(3): 1817–1822
83 Yue C, Yu  Y, Wu Z , et al.. High stability induced by the TiN/Ti interlayer in three-dimensional Si/Ge nanorod arrays as anode in micro lithium ion battery. ACS Applied Materials & Interfaces, 2016, 8(12): 7806–7810
84 Yue C, Yu  Y, Sun S , et al.. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Advanced Functional Materials, 2015, 25(9): 1386‒1392 doi:10.1002/adfm.201403648
Full text



  Shared   0