MXenes, as an emerging 2D material, are expected to exert a great influence on future energy storage and conversion technologies. In this review, we systematically summarize recent advances in MXene-based materials in electrocatalysis, particularly in the hydrogen evolution, oxygen evolution, oxygen reduction, nitrogen reduction, and CO2 reduction reactions. Crucial factors influencing the properties of these materials, such as functional groups, conductivity, and interface, are discussed, and challenges to the future development of MXene-based electrocatalysts are presented.
The catalytic conversion of CO2 to CO via a reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels. However, this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures. Therefore, the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs. We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO. These strategies include varying support, tuning metal–support interactions, adding reducible transition metal oxide promoters, forming bimetallic alloys, adding alkali metals, and enveloping metal particles. These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity. This short review may provide insights into future RWGS catalyst designs and optimization.
Electrochemical synthesis of hydrogen peroxide (H2O2) provides a clean and safe technology for large-scale H2O2 production. The core of this project is the development of highly active and highly selective catalysts. Recent studies demonstrate that carbonaceous materials are favorable catalysts because of their low-cost and tunable surface structures. This brief review first summarizes the strategies of carbonaceous material engineering for selective two-electron O2 reduction reaction and discusses potential mechanisms. In addition, several device designs using carbonaceous materials as catalysts for H2O2 production are introduced. Finally, research directions are proposed for practical application and performance improvement.
Water management in porous electrodes bears significance due to its strong potential in determining the performance of proton exchange membrane fuel cell. In terms of porous electrodes, internal water distribution and removal process have extensively attracted attention in both experimental and numerical studies. However, the structural difference among the catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL) leads to significant challenges in studying the two-phase flow behavior. Given the different porosities and pore scales of the CL, MPL, and GDL, the model scales in simulating each component are inconsistent. This review emphasizes the numerical simulation related to porous electrodes in the water transport process and evaluates the effectiveness and weakness of the conventional methods used during the investigation. The limitations of existing models include the following: (i) The reconstruction of geometric models is difficult to achieve when using the real characteristics of the components; (ii) the computational domain size is limited due to massive computational loads in three-dimensional (3D) simulations; (iii) numerical associations among 3D models are lacking because of the separate studies for each component; (iv) the effects of vapor condensation and heat transfer on the two-phase flow are disregarded; (v) compressive deformation during assembly and vibration in road conditions should be considered in two-phase flow studies given the real operating conditions. Therefore, this review is aimed at critical research gaps which need further investigation. Insightful potential research directions are also suggested for future improvements.
In the electrical energy transformation process, the grid-level energy storage system plays an essential role in balancing power generation and utilization. Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response, modularization, and flexible installation. Among several battery technologies, lithium-ion batteries (LIBs) exhibit high energy efficiency, long cycle life, and relatively high energy density. In this perspective, the properties of LIBs, including their operation mechanism, battery design and construction, and advantages and disadvantages, have been analyzed in detail. Moreover, the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services: (1) frequency regulation; (2) peak shifting; (3) integration with renewable energy sources; and (4) power management. In addition, the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
Stainless steel (SS) is one of the most widely used engineering materials in marine engineering. However, its corrosion in the marine atmospheric environment due to the high concentration of Cl− is a problem. The SS corrosion is a threat to the development and security of marine industry; therefore, evaluating the corrosion resistance of SSs is necessary. In this work, atmospheric corrosion detection probes based on a symmetrical electrode system were used to study the corrosion behaviors of 304 SS and 2205 duplex stainless steel (DSS) in a simulated marine atmosphere. A theoretical model for electrochemical noise (EN) data analysis based on the Thevenin electrochemical equivalent circuit (EEC) model was established. The relationship between the EN characteristic parameters and the corrosion rate was obtained. The Thevenin EEC model analysis showed that the relationship between the noise resistance (R n), the noise impedance [R sn(f)], and the impedance modulus (|Z(f)|) was $R_{{\text{n}}} \approx R_{{{\text{sn}}}} = {}^{\sqrt 3 }\left| {Z(f)} \right|$. Thus, R n and R sn can be used as indicators for quantitative corrosion evaluation. The results of EN detection for the 304 SS and 2205 DSS showed that in a simulated marine atmospheric environment, the passive films on the two SSs were relatively intact at the initial exposure stage, and their dissolution rates were slow. The corrosion resistance of the 2205 DSS was higher than that of the 304 SS. With the deposition of Cl− on the SS surface, pitting was initiated and the dissolution rate increased. The pitting initiation process on the SS surface was random, and part of the active pores could be repassivated.
Interest in the development of grid-level energy storage systems has increased over the years. As one of the most popular energy storage technologies currently available, batteries offer a number of high-value opportunities due to their rapid responses, flexible installation, and excellent performances. However, because of the complexity, multifunctionality, and wide deployment of power grids, trade-offs in battery performance exist, especially when considering economics, environmental effects, and safety. Therefore, establishing a comprehensive assessment of battery technologies is an urgent undertaking. In this work, we present an analysis of rough sets to evaluate the integration of battery systems (e.g., lead–acid batteries, lithium-ion batteries, nickel/metal–hydrogen batteries, zinc–air batteries, and Na–S batteries) into a power grid. Specifically, technological properties, economic significance, environmental effects, and safety of these battery systems are evaluated on the basis of rough set theory. In addition, some perspectives are provided to promote the development of battery technologies for grid-level energy storage.