Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts

Min Zhu , Qingfeng Ge , Xinli Zhu

Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (3) : 172 -187.

PDF
Transactions of Tianjin University ›› 2020, Vol. 26 ›› Issue (3) : 172 -187. DOI: 10.1007/s12209-020-00246-8
Review

Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts

Author information +
History +
PDF

Abstract

The catalytic conversion of CO2 to CO via a reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels. However, this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures. Therefore, the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs. We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO. These strategies include varying support, tuning metal–support interactions, adding reducible transition metal oxide promoters, forming bimetallic alloys, adding alkali metals, and enveloping metal particles. These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity. This short review may provide insights into future RWGS catalyst designs and optimization.

Keywords

Carbon dioxide / Reverse water gas shift reaction / Methanation / Supported metal catalyst / Mechanism

Cite this article

Download citation ▾
Min Zhu, Qingfeng Ge, Xinli Zhu. Catalytic Reduction of CO2 to CO via Reverse Water Gas Shift Reaction: Recent Advances in the Design of Active and Selective Supported Metal Catalysts. Transactions of Tianjin University, 2020, 26(3): 172-187 DOI:10.1007/s12209-020-00246-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Knutson TR, Tuleya RE. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Climate, 2004, 17(18): 3477-3495.

[2]

Hansen J, Sato M, Ruedy R, et al. Global temperature change. Proc Natl Acad Sci USA, 2006, 103(39): 14288-14293.

[3]

Yang J, Cai W, Ma MD, et al. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci Total Environ, 2020, 711: 134569.

[4]

Ahmed R, Liu GJ, Yousaf B, et al. Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—a review. J Clean Prod, 2020, 242: 118409.

[5]

Ansaloni L, Salas-Gay J, Ligi S, et al. Nanocellulose-based membranes for CO2 capture. J Membr Sci, 2017, 522: 216-225.

[6]

Quarton CJ, Samsatli S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: insights from integrated value chain optimisation. Appl Energy, 2020, 257: 113936.

[7]

Mac Dowell N, Fennell PS, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change, 2017, 7(4): 243-249.

[8]

Hadjadj R, Deák C, Palotás ÁB, et al. Renewable energy and raw materials—the thermodynamic support. J Clean Prod, 2019, 241: 118221.

[9]

De Ras K, van de Vijver R, Galvita VV, et al. Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. Curr Opin Chem Eng, 2019, 26: 81-87.

[10]

Wang ZJ, Song H, Liu HM, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects. Angew Chem Int Ed, 2020, 59: 2-22.

[11]

Kaiser P, Unde R, Kern C, et al. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-tropsch synthesis. Chemie Ingenieur Tech, 2013, 85(4): 489-499.

[12]

Daza YA, Kuhn JN. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv, 2016, 6(55): 49675-49691.

[13]

Ali N, Bilal M, Nazir MS, et al. Thermochemical and electrochemical aspects of carbon dioxide methanation: a sustainable approach to generate fuel via waste to energy theme. Sci Total Environ, 2020, 712: 136482.

[14]

Zhuang YC, Currie R, McAuley KB, et al. Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5 wt% Ru-promoted Cu/ZnO/Al2O3 catalyst. Appl Catal A: Gen, 2019, 575: 74-86.

[15]

He YL, Yang KR, Yu ZW, et al. Catalytic manganese oxide nanostructures for the reverse water gas shift reaction. Nanoscale, 2019, 11(35): 16677-16688.

[16]

Xu XD, Moulijn JA. Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels, 1996, 10(2): 305-325.

[17]

Xu JH, Su X, Duan HM, et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J Catal, 2016, 333: 227-237.

[18]

Nityashree N, Price CAH, Pastor-Perez L, et al. Carbon stabilised saponite supported transition metal-alloy catalysts for chemical CO2 utilisation via reverse water-gas shift reaction. Appl Catal B: Environ, 2020, 261: 118241.

[19]

Dias YR, Perez-Lopez OW. Carbon dioxide methanation over Ni-Cu/SiO2 catalysts. Energy Convers Manag, 2020, 203: 112214.

[20]

Konsolakis M, Lykaki M, Stefa S, et al. CO2 hydrogenation over nanoceria-supported transition metal catalysts: role of ceria morphology (nanorods versus nanocubes) and active phase nature (Co versus Cu). Nanomaterials, 2019, 9(12): 1739.

[21]

Wang YJ, Xu Y, Liu QK, et al. Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts. J Chem Technol Biotechnol, 2019, 94(12): 3780-3786.

[22]

Qiu M, Tao HL, Li Y, et al. Insight into the mechanism of CO2 and CO methanation over Cu(100) and Co-modified Cu(100) surfaces: a DFT study. Appl Surf Sci, 2019, 495: 143457.

[23]

Li WH, Zhang GH, Jiang X, et al. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): effects of crystal phase of supports and metal–support interaction on tuning product distribution. ACS Catal, 2019, 9(4): 2739-2751.

[24]

Ginés MJL, Marchi AJ, Apesteguía CR. Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl Catal A: Gen, 1997, 154(1–2): 155-171.

[25]

Fujita SI, Usui M, Takezawa N. Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst. J Catal, 1992, 134(1): 220-225.

[26]

Chen C, Cheng WH, Lin S. Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst. Catal Lett, 2000, 68(1–2): 45-48.

[27]

Goguet A, Meunier FC, Tibiletti D, et al. Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. J Phys Chem B, 2004, 108(52): 20240-20246.

[28]

Zhang M, Zijlstra B, Filot IAW, et al. A theoretical study of the reverse water-gas shift reaction on Ni(111) and Ni(311) surfaces. Can J Chem Eng, 2020, 98(3): 740-748.

[29]

Fornero EL, Chiavassa DL, Bonivardi AL, et al. Transient analysis of the reverse water gas shift reaction on Cu/ZrO2 and Ga2O3/Cu/ZrO2 catalysts. J CO2 Util, 2017, 22: 289-298.

[30]

Ernst K. Kinetics of the reverse water–gas shift reaction over Cu(110). J Catal, 1992, 134(1): 66-74.

[31]

Hadden RA, Vandervell HD, Waugh KC, et al. The adsorption and decomposition of carbon dioxide on polycrystalline copper. Catal Lett, 1988, 1(1–3): 27-33.

[32]

Kim SS, Lee HH, Hong SC. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts. Appl Catal A: Gen, 2012, 423–424: 100-107.

[33]

Widmann D, Behm RJ. Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed, 2011, 50(43): 10241-10245.

[34]

Kotobuki M, Leppelt R, Hansgen DA, et al. Reactive oxygen on a Au/TiO2 supported catalyst. J Catal, 2009, 264(1): 67-76.

[35]

Sharma S, Hilaire S, Vohs JM, et al. Evidence for oxidation of ceria by CO2. J Catal, 2000, 190(1): 199-204.

[36]

Bernal S, Blanco G, Gatica JM, et al. Effect of mild Re-oxidation treatments with CO2 on the chemisorption capability of a Pt/CeO2 catalyst reduced at 500 °C. J Catal, 2001, 200(2): 411-415.

[37]

Su X, Yang XL, Zhao B, et al. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem, 2017, 26(5): 854-867.

[38]

Chen XD, Su X, Liang BL, et al. Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO2 catalysts. J Energy Chem, 2016, 25(6): 1051-1057.

[39]

Jacobs G, Davis BH. Reverse water-gas shift reaction: steady state isotope switching study of the reverse water-gas shift reaction using in situ DRIFTS and a Pt/ceria catalyst. Appl Catal A: Gen, 2005, 284(1–2): 31-38.

[40]

Shido T, Iwasawa Y. Reactant-promoted reaction mechanism for water-gas shift reaction on Rh-doped CeO2. J Catal, 1993, 141(1): 71-81.

[41]

Chen XD, Su X, Duan HM, et al. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal Today, 2017, 281: 312-318.

[42]

Kim SS, Park KH, Hong SC. A study of the selectivity of the reverse water–gas-shift reaction over Pt/TiO2 catalysts. Fuel Process Technol, 2013, 108: 47-54.

[43]

Meunier FC, Tibiletti D, Goguet A, et al. On the reactivity of carbonate species on a Pt/CeO2 catalyst under various reaction atmospheres: application of the isotopic exchange technique. Appl Catal A: Gen, 2005, 289(1): 104-112.

[44]

Goguet A, Shekhtman S, Burch R, et al. Pulse-response TAP studies of the reverse water–gas shift reaction over a Pt/CeO2 catalyst. J Catal, 2006, 237(1): 102-110.

[45]

Dou J, Sheng Y, Choong C, et al. Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl Catal B: Environ, 2017, 219: 580-591.

[46]

Panagiotopoulou P. Hydrogenation of CO2 over supported noble metal catalysts. Appl Catal A: Gen, 2017, 542: 63-70.

[47]

Park JN, McFarland EW. A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J Catal, 2009, 266(1): 92-97.

[48]

Porosoff MD, Yan BH, Chen JG. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci, 2016, 9(1): 62-73.

[49]

Saeidi S, Najari S, Fazlollahi F, et al. Mechanisms and kinetics of CO2 hydrogenation to value-added products: a detailed review on current status and future trends. Renew Sustain Energy Rev, 2017, 80: 1292-1311.

[50]

Wang W, Wang SP, Ma XB, et al. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev, 2011, 40(7): 3703-3727.

[51]

Kattel S, Liu P, Chen JG. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc, 2017, 139(29): 9739-9754.

[52]

Tao Y, Zhu YM, Liu CJ, et al. A highly selective Cr/ZrO2 catalyst for the reverse water-gas shift reaction prepared from simulated Cr-containing wastewater by a photocatalytic deposition process with ZrO2. J Environ Chem Eng, 2018, 6(6): 6761-6770.

[53]

Porosoff MD, Yang XF, Boscoboinik JA, et al. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed, 2014, 53(26): 6705-6709.

[54]

Daza YA, Maiti D, Kent RA, et al. Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1−Y)Fe YO3 perovskite-type oxides. Catal Today, 2015, 258: 691-698.

[55]

Aitbekova A, Wu LH, Wrasman CJ, et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction. J Am Chem Soc, 2018, 140(42): 13736-13745.

[56]

Matsubu JC, Yang VN, Christopher P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc, 2015, 137(8): 3076-3084.

[57]

Li J, Lin YP, Pan XL, et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal, 2019, 9(7): 6342-6348.

[58]

Kattel S, Yan BH, Chen JG, et al. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: importance of synergy between Pt and oxide support. J Catal, 2016, 343: 115-126.

[59]

Ye JY, Ge QF, Liu CJ. Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd-In/SiO2 catalyst. Chem Eng Sci, 2015, 135: 193-201.

[60]

Shi C, O’Grady CP, Peterson AA, et al. Modeling CO2 reduction on Pt(111). Phys Chem Chem Phys, 2013, 15(19): 7114.

[61]

Kwak JH, Kovarik L, Szanyi J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal, 2013, 3(9): 2094-2100.

[62]

Bobadilla LF, Santos JL, Ivanova S, et al. Unravelling the role of oxygen vacancies in the mechanism of the reverse water–gas shift reaction by operando DRIFTS and ultraviolet–visible spectroscopy. ACS Catal, 2018, 8(8): 7455-7467.

[63]

Yang SC, Pang SH, Sulmonetti TP, et al. Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions. ACS Catal, 2018, 8(12): 12056-12066.

[64]

Sakurai H, Tsubota S, Haruta M. Hydrogenation of CO2 over gold supported on metal oxides. Appl Catal A: Gen, 1993, 102(2): 125-136.

[65]

Kattel S, Yu WT, Yang XF, et al. CO2 hydrogenation over oxide-supported PtCo catalysts: the role of the oxide support in determining the product selectivity. Angew Chem Int Ed, 2016, 55(28): 7968-7973.

[66]

Kwak JH, Kovarik L, Szanyi J. CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal, 2013, 3(11): 2449-2455.

[67]

Li SW, Xu Y, Chen YF, et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal–support interaction. Angew Chem Int Ed, 2017, 56(36): 10761-10765.

[68]

Yan BH, Zhao BH, Kattel S, et al. Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. J Catal, 2019, 374: 60-71.

[69]

Chen CS, Cheng WH, Lin SS. Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Appl Catal A: Gen, 2003, 238(1): 55-67.

[70]

Liang BL, Duan HM, Su X, et al. Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst. Catal Today, 2017, 281: 319-326.

[71]

Bando KK, Soga K, Kunimori K, et al. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts. Appl Catal A: Gen, 1998, 175(1–2): 67-81.

[72]

Wang CT, Guan EJ, Wang L, et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J Am Chem Soc, 2019, 141(21): 8482-8488.

[73]

Goguet A, Meunier F, Breen J, et al. Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction. J Catal, 2004, 226(2): 382-392.

[74]

Wang LC, Tahvildar Khazaneh M, Widmann D, et al. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst—a first step toward identifying a redox mechanism in the Reverse Water-Gas Shift reaction. J Catal, 2013, 302: 20-30.

[75]

Jin T, Zhou Y, Mains GJ, et al. Infrared and X-ray photoelectron spectroscopy study of carbon monoxide and carbon dioxide on platinum/ceria. J Phys Chem, 1987, 91(23): 5931-5937.

[76]

Porosoff MD, Chen JG. Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts. J Catal, 2013, 301: 30-37.

[77]

Chen XD, Su X, Su HY, et al. Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO2 to CO conversion. ACS Catal, 2017, 7(7): 4613-4620.

[78]

Kim SS, Lee HH, Hong SC. The effect of the morphological characteristics of TiO2 supports on the reverse water–gas shift reaction over Pt/TiO2 catalysts. Appl Catal B: Environ, 2012, 119–120: 100-108.

[79]

Ro I, Sener CN, Stadelman TM, et al. Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoO x interfacial sites over visible light enhanced PtMoO x/SiO2 catalyst in reverse water gas shift reaction. J Catal, 2016, 344: 784-794.

[80]

Alayoglu S, Beaumont SK, Zheng F, et al. CO2 hydrogenation studies on Co and CoPt bimetallic nanoparticles under reaction conditions using TEM. XPS NEXAFS. Top Catal, 2011, 54(13–15): 778-785.

[81]

Yuan HJ, Zhu XL, Han JY, et al. Rhenium-promoted selective CO2 methanation on Ni-based catalyst. J CO2 Util, 2018, 26: 8-18.

[82]

Kharaji AG, Shariati A, Takassi MA. A novel γ-alumina supported Fe-Mo bimetallic catalyst for reverse water gas shift reaction. Chin J Chem Eng, 2013, 21(9): 1007-1014.

[83]

Zhu XL, Shen M, Lobban LL, et al. Structural effects of Na promotion for high water gas shift activity on Pt–Na/TiO2. J Catal, 2011, 278(1): 123-132.

[84]

Santos J, Bobadilla L, Centeno M, et al. Operando DRIFTS-MS study of WGS and rWGS reaction on biochar-based Pt catalysts: the promotional effect of Na. C, 2018, 4(3): 47.

[85]

Yang M, Li S, Wang Y, et al. Catalytically active Au-O(OH) x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science, 2014, 346(6216): 1498-1501.

[86]

Yang XL, Su X, Chen XD, et al. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl Catal B: Environ, 2017, 216: 95-105.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/