This paper focuses on obtaining an asymptotic solution for coupled heat and mass transfer problem during the solidification of high water content materials. It is found that a complicated function involved in governing equations can be approached by Taylor polynomials unlimitedly, which leads to the simplification of governing equations. The unknown functions involved in governing equations can then be approximated by Chebyshev polynomials. The coefficients of Chebyshev polynomials are determined and an asymptotic solution is obtained. With the asymptotic solution, the dehydration and freezing fronts of materials are evaluated easily, and are consistent with numerical results obtained by using an explicit finite difference method.
The trajectory model of dispersed phase drops and the model of basic flow for drop motion between two inclined parallel plates are derived with the optimized calculation. The analytical results of direct numerical simulation indicate that the basic flow plays an important role in the drop coalescence on liquid-liquid interface. In the stratified two-phase flow field, the smaller droplets are difficult to drain the thin continuous film between the approaching droplets and bulk interfaces and eventually immerse into the trickling film to yield coalescence. They almost attain the velocity of their local surroundings. Moreover, the basic flow exerts a dominant influence on the motion of smaller droplet. The smaller droplets are easily entrained by the basic flow. On the contrary, the larger drop presents advantageous characteristics of coalescence due to its high velocity. The range of 0.3mm < δ R ⩽ 0.75 mm is the advantageous drop coalescence condition since the rapidly varied velocity and its first derivative theoretically cause the forces acting on a drop to become imbalanced. On the other hand, the thin layer of the continuous phase drained from the interval between the drops and trickling film should not be neglected in the calculation of shearing force since it is important for drop rotation. The drop rotation is an indispensable factor in coalescence.
Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.
The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.
A novel simplified method is presented to design FIR filter with controllable center frequency. The properties of transfer curves for all-phase filters are illustrated under 3 windowing conditions. By combining single-window all-phase filter design steps and double phase-shift combination, a series of design formulas for point-pass filter, notch filter, band-pass filter and band-stop filter are derived, thus the design computation complexity is greatly reduced. Experiments prove that the center frequency of all the filters can be accurately specified at arbitrary position by adjusting frequency parameters m and λ.
Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is −0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.
Application-specific data processing units (DPUs) are commonly adopted for operational control and data processing in space missions. To overcome the limitations of traditional radiation-hardened or fully commercial design approaches, a reconfigurable-system-on-chip (RSoC) solution based on state-of-the-art FPGA is introduced. The flexibility and reliability of this approach are outlined, and the requirements for an enhanced RSoC design with inflight reconfigurability for space applications are presented. This design has been demonstrated as an on-board computer prototype, providing an in-flight reconfigurable DPU design approach using integrated hardwired processors.
A new type of despreader for direct sequence spread spectrum signal is proposed. Compared with traditional despreaders, the new despreader does not contain hard decision ware or handle binary sequence any more, and the locally stored spread spectrum signals are pre-modulated baseband signals (such as Gaussian minimum shift keying (GMSK) signals), which are much more similar to the received spread spectrum signals. Moreover, the missed detection probability of the despreader is about one order of magnitude lower than that of traditional ones. Based on the maximum likelihood criterion and phase probability density function of demodulated signal, a new method of analyzing the despreaders’ performance is put forward, which is proved to be more accurate than traditional methods according to the numerical results. Finally, an adaptive despreader under different signal-to-noise ratios is given.
This paper proposes a simple and efficient distributed algorithm for calculating minimal dominating set in wireless sensor network. This method can avoid maintaining the connectivities between backbone hosts. Considering that the hosts in mobile networks have different characteristics, this paper proposes a method of calculating minimal dominating set with weight. The nodes can be chosen to form a minimal dominating set when the network topology changes. For the host switch on/off operation, the updating algorithm was provided. The change in the status of a host affects only the status of hosts in the restricted vicinity. Simulation results show that the proposed method can ensure fewer dominators but with higher weight to form the minimal dominating set and the nodes can be adaptive to the changes of network topology.
A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufacturing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to satisfy different processing needs. The scanning system is composed of galvanometer scanning mirrors and F-θ lens. And the flying optical system is driven by two servo motors. This paper presents the software and hardware design of the laser die-cutting system, the difference between the two optical paths, as well as the relationship among the cutting speed, thickness of wrapping paper and laser power. The cutting speed and thickness of wrapping paper are linearly increased by the incremental laser power, while the cutting speed is hyperbolically decreased by the incremental thickness of wrapping paper when the laser power is constant. The amount of incision is reduced by 20% and the processing time by 40% when tested by a low power RF CO2 laser die-cutting system using the optimized program. This technique is also used for the reference of other rapid laser processing systems.
A precise zoom magnification is important for semiconductor industry and biomedical research. A novel measurement method is demonstrated for optical zoom magnification measurement in this paper. The magnification is obtained by pattern correction between barcode image formed by optical zoom and reference image generated by an ideal optical model. Measurement accuracy which is better than 0.06% has been achieved for optical zoom magnification. Compared with traditional concept, the measurement results are only dependent on two line edges. The barcode correlation method can achieve higher accuracy and better robustness by using the information over the whole field of view.
There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index distinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus developed by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio were investigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic coupling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.
A macroscopic frost heave model with more clear parameters was established. Based on a porosity rate frost heave model and segregation potential theory, a porosity rate function was deduced and introduced into the stress-strain relationship. Numerical simulation was conducted and verified by frost heave tests. Results show that the porosity rate within the frozen fringe is proportional to the square of temperature gradient and current porosity, and is also proportional to the exponential function of applied pressure. The relative errors between the calculated and measured results of frost depth and frost heave are within 3% and 15% respectively, demonstrating that the temperature gradient, applied pressure and current porosity are the main influencing factors, while temperature is just the constraint of frozen fringe. The improved model have meaningful and accessible parameters, which can be used in engineering with good accuracy.
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.