InP-based RTD/HEMT monolithic integration

Haitao Qi , Weilian Guo , Yali Li , Xiongwen Zhang , Xiaobai Li

Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (4) : 267 -269.

PDF
Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (4) : 267 -269. DOI: 10.1007/s12209-010-1374-6
Article

InP-based RTD/HEMT monolithic integration

Author information +
History +
PDF

Abstract

Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is −0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.

Keywords

resonant tunneling diode / high electron mobility transistor / InP / monolithic integration

Cite this article

Download citation ▾
Haitao Qi, Weilian Guo, Yali Li, Xiongwen Zhang, Xiaobai Li. InP-based RTD/HEMT monolithic integration. Transactions of Tianjin University, 2010, 16(4): 267-269 DOI:10.1007/s12209-010-1374-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brown E. R., Soderstrom J. R., Parker C. D., et al. Oscillations up to 712 GHz in InAs/AlSb resonant tunneling diodes[J]. Applied Physics Letters, 1991, 58(20): 2291-2293.

[2]

Shimizu N., Nagatsuma T., Waho T., et al. InGaAs/AlAs resonant tunneling diodes with switching time of 1.5 ps[J]. Electronics Letters, 1995, 31(19): 1694-1697.

[3]

Alan C. S., Kao Y. H., Yuan T. Z. Nine-state resonant tunneling diode memory[J]. IEEE Electron Device Letters, 1992, 13(9): 479-481.

[4]

Pacha C., Auer U., Burwick C., et al. Threshold logic circuit design of parallel adders using resonant tunneling devices[ J] IEEE Transactions on VLSI Systems, 2000, 8(5): 558-572.

[5]

Matsuzaki H., Osaka J., Itoh T., et al. Monolithic integration of resonant tunneling diodes, Schottky barrier diodes and 0.1-μm-gate high electron mobility transistors for highspeed ICs[J]. Japanese Journal of Applied Physics, 2001, 40(4A): 2186-2190.

[6]

Kim H., Yeon S. J., Song S., et al. High-speed digital circuits using InP-based resonant tunneling diode and high electron mobility transistor heterostructure[J]. Japanese Journal of Applied Physics, 2006, 45(4B): 3384-3386.

[7]

Quintana J. M., Avedillo M. J. Analysis of frequency divider RTD circuits[J]. IEEE Transactions on Circuits and Systems I, 2005, 52(10): 2234-2247.

[8]

Sunkyu C., Yongsik J., Jongwon L., et al. A novel high-speed multiplexing IC based on resonant tunneling diodes[J]. IEEE Transactions on Nanotechnology, 2009, 8(4): 482-486.

[9]

Kim T., Jeong Y., Yang K. Low-power static frequency divider using an InP-based monolithic RTD/HBT technology[J]. Electronics Letters, 2006, 42(1): 27-29.

[10]

Jeong Y., Choi S., Yang K. A mW Ku-band RTD VCO for extremely low power applications[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(9): 569-571.

[11]

Quintana J. M., Avedillo M. J., Nunez J., et al. Operation limits for RTD-based MOBILE circuits[J]. IEEE Transactions on Circuits and Systems I, 2009, 56(2): 350-363.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/