The stability and ductility of four buckling-restrained braces (BRBs) with brace joints were studied. The load-carrying element of BRB was fabricated with steel (Chinese Q235), and a layer of colloidal silica sheet (0.5 mm in thickness) or four layers of plastic film (0.2 mm in thickness) were used as unbonding materials to provide space to prevent the buckling of inner core in higher modes and facilitate its lateral expansion in case of compression. Based on the equation of BRBs with brace joints of different restrained stiffnesses, the buckling load is calculated considering the initial geometric imperfections and residual stress, and the theoretical values agree well with the experiment results. It is concluded that the buckling load and ductility of BRBs are influenced greatly by the restrained stiffness of brace joints. If the restrained stiffness is deficient, the unstrained segment of BRBs with less stiffness will buckle firstly. As a result, the ultimate load of BRBs decreases, and the maximum compression load is reduced to about 65% of the maximum tension load; the stiffness also degenerates, and there is a long decreasing stage on the back-bone curve in compression phase; the ductility decreases, i.e., the ultimate tension ductility and ultimate compression ductility are approximately 15 and 1.3 respectively, and the cumulative plastic ductility is only approximately 200. If the restrained stiffness of joint is large enough, the stability will be improved as follows: the yielding strength and ultimate strength of BRBs are nearly the same, and there is an obvious strain intensification in both tension and compression phases; the ductility of brace also increases obviously, i.e., the ultimate tension ductility and ultimate compression ductility are both approximately 14, and the cumulative plastic ductility reaches 782.
The stress-strain curves of confined concrete were obtained based on tests of seven cross-shaped columns confined by stirrups under axial load. The experiment results showed that the strength and deformation of confined concrete can be enhanced effectively by stirrups for cross-shaped columns. Compared with the non-confined concrete, when the stirrup characteristic value is in the range of 0.046–0.230, the confined concrete compressive strengths has an increase of 8%–43%, and the strain corresponding to the peak stress of confined concrete has an increase of 25%–195%. According to the test results, the effects of stirrup characteristic and stirrup spacing on the compressive strength and strain of confined concrete were analysed. It is shown that the compressive strength of confined concrete has a linear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient, and the strain corresponding to the peak stress of confined concrete has a nonlinear relationship with the product of stirrup characteristic value and stirrup effective restraint coefficient. The stress-strain curve equation of confined concrete was proposed for cross-shaped columns, and the calculated curves are in good agreement with the experimental curves.
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.
The cumulative sum (CUSUM) algorithm is proposed to detect the selfish behavior of a node in a wireless ad hoc network. By tracing the statistics characteristic of the backoff time between successful transmissions, a wireless node can distinguish if there is a selfish behavior in the wireless network. The detection efficiency is validated using a Qualnet simulator. An IEEE 802.11 wireless ad hoc network with 20 senders and 20 receivers spreading out randomly in a given area is evaluated. The well-behaved senders use minimum contention window size of 32 and maximum contention window size of 1 024, and the selfish nodes are assumed not to use the binary exponential strategy for which the contention window sizes are both fixed as 16. The transmission radius of all nodes is 250 m. Two scenarios are investigated: a single-hop network with nodes spreading out in 100 m×100 m, and all the nodes are in the range of each other; and a multi-hop network with nodes spreading out in 1 000 m×1 000 m. The node can monitor the backoff time from all the other nodes and run the detection algorithms over those samples. It is noted that the threshold can significantly affect the detection time and the detection accuracy. For a given threshold of 0.3 s, the false alarm rates and the missed alarm rates are less than 5%. The detection delay is less than 1.0 s. The simulation results show that the algorithm has short detection time and high detection accuracy.
This paper proposes a one-branch zero-IF receiver topology, which samples the I and Q signals of the modulated RF carrier with one signal path by means of a multiphase local oscillator. The suggested one-branch receiver works without matching problem, and it is also capable of cancelling out the flicker noise and DC-offset when the local oscillator is configured to the four-phase mode. The one-branch receiver saves much area and power compared with the traditional two-branch ones. All of the advantages above make the one-branch receiver topology a promising architectural candidate for low-power and low-cost RF CMOS receiver designs.
This paper presents a novel leapfrog signal flow graph (SFG) implementation by fully differential Op amp integrators, which combines low sensitivity, high dynamic range with simple circuit configuration. The direct SFG simulation and leapfrog SFG simulation can yield integrator-based structures likewise, but both of them will lead to higher circuit complexity, noise density and sensitivity. Three Butterworth 5-order high-pass filters with a pass band edge frequency of 1.778 kHz are designed based on different SFGs. From the example, the noise density of the simplest leapfrog configuration is approximately 0.4 nV/Hz1/2 lower than those of the other two in the stop band, and shows the best noise density in the pass band. The sensitivity densities of two types of leapfrog filters are approximately equivalent, while that of the direct SFG simulation filter is much higher. However, the pass band response of the simplest configuration is not as good as those of the other two because of two parasitic zeros (at 708 kHz, −31.6 dB and 1.59 MHz, −20.55 dB) and a parasitic pole (at 4.57 MHz, 45.5 dB).
A new kind of region pair grey difference classifier was proposed. The regions in pairs associated to form a feature were not necessarily directly-connected, but were selected dedicatedly to the grey transition between regions coinciding with the face pattern structure. Fifteen brighter and darker region pairs were chosen to form the region pair grey difference features with high discriminant capabilities. Instead of using both false acceptance rate and false rejection rate, the mutual information was used as a unified metric for evaluating the classifying performance. The parameters of specified positions, areas and grey difference bias for each single region pair feature were selected by an optimization processing aiming at maximizing the mutual information between the region pair feature and classifying distribution, respectively. An additional region-based feature depicting the correlation between global region grey intensity patterns was also proposed. Compared with the result of Viola-like approach using over 2 000 features, the proposed approach can achieve similar error rates with only 16 features and 1/6 implementation time on controlled illumination images.
Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.
By analyzing the existing prefix-tree data structure, an improved pattern tree was introduced for processing new transactions. It firstly stored transactions in a lexicographic order tree and then restructured the tree by sorting each path in a frequency-descending order. While updating the improved pattern tree, there was no need to rescan the entire new database or reconstruct a new tree for incremental updating. A test was performed on synthetic dataset T10I4D100K with 100,000 transactions and 870 items. Experimental results show that the smaller the minimum support threshold, the faster the improved pattern tree achieves over CanTree for all datasets. As the minimum support threshold increased from 2% to 3.5%, the runtime decreased from 452.71 s to 186.26 s. Meanwhile, the runtime required by CanTree decreased from 1,367.03 s to 432.19 s. When the database was updated, the execution time of improved pattern tree consisted of construction of original improved pattern trees and reconstruction of initial tree. The experiment results showed that the runtime was saved by about 15% compared with that of CanTree. As the number of transactions increased, the runtime of improved pattern tree was about 25% shorter than that of FP-tree. The improved pattern tree also required less memory than CanTree.
Szász-type operators can be constructed by a Poisson process. The purpose of this paper is to derive the converse result in connection with Szász-type operators by Steckin-Marchaud-type inequalities and new Ditzian modulus of continuity. The degree of approximation on deterministic signals is also given.
Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P 0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.
The metastable state and nucleation kinetics of clindamycin phosphate (CP) in cooling crystallization were studied by metastable zone width (MZW) method and induction time method. By correlating the MZW experimental results with temperature, agitation rate and cooling rate, it is found that the correlation result shows good agreement with the change trend of MZW. The critical nucleation parameters were evaluated based on the classical theory of nucleation; both the interfacial tension and the radius of critical nucleus increased with the decrease of relative supersaturation. The effect of supersaturation on the nucleation rate was analyzed. It is indicated that the new phase formation of CP is governed by mononuclear mechanism.
The spatial distribution of extracellular polymeric substances (EPS) in a pilot-scale membrane bioreactor (MBR) was studied. The sampling points on top of and inside the membrane module were measured and analyzed by the experimental variant function. The content of EPS was spatially interpolated by ordinary Kriging method, and illustrated with SURFER software. A case study was carried out in an MBR with membrane aperture of 0.4 μm and handling capacity of 120 m3/d in Jizhuangzi sewage treatment plant, Tianjin. From the visualization of EPS distribution, it is seen that on the horizontal plane, the content of EPS was the lowest at the center; and on the vertical plane, the content of EPS decreased with the increase of depth. The shearing force caused by aeration of perforated pipe and the influent mode are the main influencing factors for this distribution.
(K0.47Na0.47Li0.06)NbO3 (KNLN) lead-free ceramics were prepared by molten salt synthesis (MSS) method using k2CO3-Na2CO3 eutectic mixtures as the flux. The microstructure and piezoelectric properties when sintered at 980–1 030 °C were investigated. The calcined powders were examined by X-ray diffraction. The microstructure of the calcined powders and sintered bodies was observed using a scanning electron microscope (SEM).The piezoelectric constant d 33 was measured using a quasi-static piezoelectric d 33 meter. The planar coupling coefficient K p was calculated by resonance-antiresonance method. The experimental data for each sample’s performance indicators were the average values of 8 specimens. The relative densities of sintered specimens are above 97%, and the dielectric loss is below 0.03. It was found that (K0.47Na0.47Li0.06)NbO3 prepared by MSS is compact and lead-free. The piezoelectric constant d 33 is 216 pC·N−1 and the planar electromechanical coupling factor K p is 0.352.
In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temperature. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy(EDS), and differential scanning calorimetry(DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1:0.4, and the calcination and expansion temperature is in the range of 650–750 °C. Under such conditions, the expansion volume of composites could reach 98 mL/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.